RÉPUBLIQUE DU SÉNÉGAL

UNIVERSITÉ CHEIKH ANTA DIOP DE DAKAR ÉCOLE POLYTECHNIQUE DE THIES

GM.

A devot

PROJET DE FIN D'ÉTUDES EN VUE DE L'OBTENTION DU DIPLOME D'INGÉNIEUR DE CONCEPTION

Titre:

MODELISATION D'UN SYSTEME DE CLIMATISATION PAR MACHINE A ABSORPTION SOLAIRE

Auteur: Mouhamed DIOP

Directeur: Banda NDOYE

Co-directeur: Mamadou SARR

DATE: juillet 1996

A ma mère Sokhna Guèye, A mon père Assane Diop, A mon frère Cheickh T. Diop, que son âme repose en paix

REMERCIEMENTS

J'aimerais exprimer ma reconnaissance à tous ceux qui ont contribué à la réalisation de ce travail. Ces remerciements vont tout spécialement aux élèvesingénieurs qui n'ont aucunement ménagé aides et conseils. Plus particulièrement Assane Fall et Saliou Yade pour leurs conseils en Turbo Pascal, la deuxième année pour son aide technique, tout spécialement les élèves suivants: Abdoulaye Wade, Abdoulaye Kane, Haby Kane, Malick Niang, Massamba Touré, Mouhamed Thioye, et enfin les secrétaires Rose Faye, Ndèye Fall et Seynabou Sèye. Je remercie enfin mon directeur de projet Banda Ndoye qui n'a ménagé aucun effort pour nous fournir de précieux documents.

SOMMAIRE

Le but de ce travail est d'étudier la climatisation solaire par machine à absorption. Après une modélisation du groupe frigorifique, découlant d'une étude du cycle à absorption eaubromure de lithium, nous avons procédé à l'analyse des influences de paramétres extérieurs sur les performances de la machine. Ensuite, nous avons effectué une étude détaillée des sollicitations thermiques qui existent dans un bâtiment pour mettre en place un outil de calcul des charges frigorifiques. Cet outil pourra ainsi nous permettre d'évaluer pour un pas de temps d'une heure, les charges thermiques d'un local donné de 8 heures à 17 heures (heures solaires).

Les paramétres extérieurs de fonctionnement influent beaucoup sur les performances du groupe à absorption. En effet, une augmentation de la température de rejet de chaleur (eau de refroidissement), par l'effet qu'elle induit sur les températures à l'absorbeur et au condenseur, participe à une détérioration du COP et de la capacité de réfrigération du groupe. Par contre, il est nécessaire, pour l'obtention d'un COP et d'une capacité de réfrigération élevée de faire fonctionner le groupe avec des températures d'eau chaude élevées. Toutefois, les températures d'eau chaude fournies par les capteurs actuels (80 à100°C) seront largement suffisantes pour obtenir de bonnes performances.

Les groupes frigorifiques à absorption alimentés par énergie thermique solaire occupent une place de choix dans la vaste gamme de systèmes de climatisation solaire. Ils ont le grand avantage de suivre l'évolution de la charge thermique contrairement aux autres systèmes de climatisation. C'est pourquoi beaucoup de travaux de recherche sont actuellement en cours pour l'amélioration de ces machines.

Mots-clés: machine frigorifique, cycle à absorption, bromure de lithium, charges thermiques.

TABLES DES MATIERES

	PAGE
Remerciements	
Liste des tableaux	
Liste des figures	III
Sommaire	
INTRODUCTION	1
I-RAPPEL SUR LES MACHINES FRIGORIFIQUES	2
1-Les machines frigorifiques à compression	2
a)Définition	2
b)Cycle théorique d'une machine frigorifique à compression	3
c)Expression du travail à fournir	4
d)Coefficient d'efficacité frigorifique KfKf	4
e)Expression de Kf pour une machine frigorifique fonctionnant selo	n 1
un cycle de Carnotf)Modifications apportées au cycle théorique	4 5
1)Modifications apportees au cycle theorique	
2-Systèmes de réfrigération utilisant un cycle thermo-mécanique	6
3-Systèmes de réfrigération à cycle purement thermique	7
4-Machine à absorption à cycle permanent	9
a)Description de la machine	9
b)Réalisation d'un système de production de froid solaire	12
II-LE RAYONNEMENT SOLAIRE	14
1-Données géométriques	14
a)Heure légale et heure solaire	14
b)Hauteur et azimut du soleil	
2-Données énergétiques	16
III-MODELISATION DU GROUPE A ABSORPTION	18
1-Rappels sur les diagrammes thermodynamiques	18
a)Loi des phases	18
b)Le diagramme de Merkel	19
c)Le diagramme de Oldham	22
d)Equations d'état des fluides de travail	24
2-Etude des éléments de la machine	25
a)Le générateur	
1)Description	25
2)L'échange de matière	26

3)Equation caractéristique du cycle suivi dans le générateur	26
b)L'absorbeur	27
1)Description	
2)Equations du cycle dans l'absorbeur	28
c)L'échangeur de solution	
d)Dispositifs technologiques	29
1)La pompe de solution	29
2)Le puits de solution	29
d)Le condenseur	
e)La détente	
f)L'évaporateur	
3-Système d'équations	
a)Equilibre des produits du cycle	
b)Equations de conservation de débit et du LiBr	3 1
c)Etude thermique des éléments	32
•	
4-Résolution	33
a)La conception	33
b)La simulation	
1)Influence de la température au générateur	35
2)Influence de la température de rejet de chaleur	
1	
5-Environnement énergétique des systèmes de réfrigération solaire	39
a)Les capteurs solaires	39
b)Accumulation d'énergie	
c)Rejet de chaleur	
d)Sources d'énergie auxiliaires	
u/20 ur 000 u 0110 6.0 u u/1221ur 000000000000000000000000000000000000	
IV-EVALUATION DES CHARGES	41
1-Synthèse	41
y	
2-Conditions extérieures	41
a)Les facteurs climatiques	
b)La température sèche extérieure	
c)La température humide et le degré hygrométrique	
d)Variation de la température extérieure sèche et de la température	
humide en fonction du type de climat	
1)Climat tropical	
2)Climat océanique	
3)Climat tempéré	
4)Climat nordique	
5)Climat désertique	
e)Le rayonnement solaire	
f)Calcul des apports extérieurs	
1)Parois opaques	
2)Transmission de chaleur à travers les vitrages	
DITITITATIONS OF ALL EXTERIORS	47

3-Conditions intérieures	51
a)Apports dûs aux occupants	51
b)Apports dûs aux machines électriques	52
c)Apports dûs à l'éclairage	
· 11	
4-Exemple d'évaluation	54
1	_
CONCLUSION	58
ANNEXES	59
Machine à absorption	
Evaluation des charges	63

LISTE DES TABLEAUX

TITRE	PAGE
Paramétres capteurs	39
Coefficients de convection parois	45
Estimation des débits massiques d'infiltration	50
Ecart virtuel de températures pour les toits: tab.1	64
Ecart virtuel de températures pour les murs: tab.2	65
Correction écart virtuel de températures: tab.3	66
Apports effectifs vitrage ordinaire latitude 0°NORD	67
Apports effectifs vitrage ordinaire latitude 10°NORD	68
Apports effectifs vitrage ordinaire latitude 20°NORD	69
Apports effectifs vitrage ordinaire latitude 30°NORD	70
Apports effectifs vitrage ordinaire latitude 40°NORD	71
Apports effectifs vitrage ordinaire latitude 50°NORD	72
Coefficients de trouble et d'altitude	73
Type de murs et coefficients de transfert	73
Coefficients de correction apports des effectifs d'un vitrage	74
Coefficients de correction des apports effectifs d'un vitrage	7 5
Coefficients de correction des apports effectifs d'un vitrage	76
Facteurs solaires des vitrages spéciaux simple épaisseur	<i>7</i> 7
Facteurs solaires des vitrages spéciaux double et triple	78
Facteurs solaires des dalles, pavés de verre et coupoles	
d'éclairage en matière plastique	79
Facteurs solaires des protections intérieures	80
Facteurs solaires des protections entre vitrages	80
Facteurs solaires des protections extérieures	80
Apports dûs aux occupants	81

LISTE DES FIGURES

TITRES	PAGE
Schéma de principe de représentation symbolique du cycle	
frigorifique ditherme	2
Cycle d'une machine frigorifique	2 3
Cycle frigorifique de Carnot dans le diagramme entropique	4
Cycle théorique d'une machine frigorifique	6
Système à cycle de Rankine et compression de vapeur	7
Schéma de fonctionnement du cycle tritherme	8
Schéma d'un groupe à absorption	11
Schéma de principe pour une réfrigération solaire	12
La course du soleil et sa projection stéréographique	14
Spectre solaire	17
Intensités approximatives du rayonnement solaire	17
Schéma du groupe frigorifique à absorption	18
Diagramme de Merkel	21
Diagramme de Oldham	23
Schéma du générateur	25
Echangeur de matière	26
Schéma de l'absorbeur	27
Organigramme des calculs thermodynamiques	37
Courbes des influences des paramétres extérieurs	38
Schéma du local étudié	54
Performances expérimentales d'un groupe (ARKLA WFB300)	61
Performances expérimentales d'un groupe (ARKLA WFB300)	62
Différents types de protection antisolaire des vitrages	79
Diagramme de l'air humide	82

INTRODUCTION:

Dans le contexte actuel de crise énergétique, l'énergie solaire peut être un recours très important. En effet, cette énergie calorifique à température modérée est disponible un peu partout sous une forme intermittente, et particulièrement en Afrique où elle constitue une source inépuisable. Jusqu'ici, elle n'a été vraiment utilisée que dans le domaine de l'eau chaude sanitaire, du séchage et de sa conversion photovoltaïque. Cependant la production de froid à partir de cette énergie est envisageable pour nos pays. Parmi les divers systèmes utilisés pour cela, la machine à absorption semble être une voie très prometteuse en ce sens qu'elle a été réalisée avec succès dans le cas de la climatisation des locaux. Dans ce cas d'utilisation de l'énergie solaire, à chaque instant, il existe une très bonne corrélation entre la consommation et le pourcentage disponible de la puissance du soleil.

Le projet qui nous concerne consiste en la recherche des performances d'un tel système en prenant en compte les facteurs qui vont influencer le régime de fonctionnement de l'installation.

D'abord, il a été développé un outil pour les calculs thermodynamiques d'une machine à absorption utilisant le cycle eau-bromure de lithium; cela nous permettra de rechercher les influences des paramètres extérieurs. Ensuite, nous avons procédé à l'établissement d'un programme d'évaluation des charges thermiques d'un local donné.

I - Rappel sur les machines frigorifiques

1 - Les machines frigorifiques à compression

a) Définition

Du point de vue thermodynamique, c'est une machine à deux sources de chaleur et dont le fluide frigorigène décrit un cycle fermé dans le sens indirect.

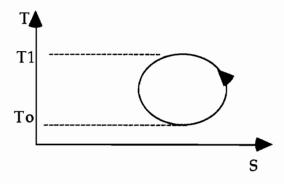


Fig. 1: Cycle d'une machine frigorifique

La machine comprend divers éléments (figure 2):

- le compresseur qui utilise de l'énergie travail pour comprimer le frigorigène
- le condenseur où le frigorigène subit une condensation en dégageant de l'énergie chaleur,
- le détendeur qui permet le passage du frigorigène de la haute pression à la basse pression du cycle
- l'évaporateur où le frigorigène subit une évaporation à basse pression en utilisant de l'énergie chaleur du milieu à réfrigérer.

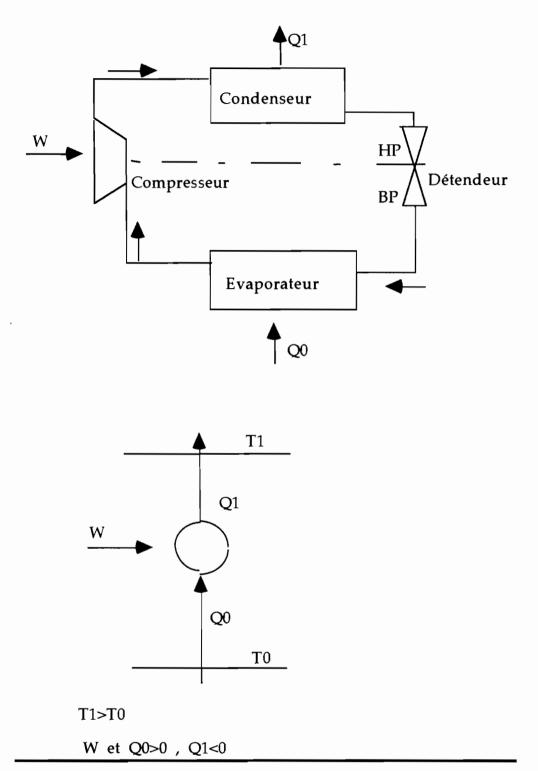


Fig. 2: Schéma du principe de représentation symbolique du cycle frigorifique ditherme

b) Cycle théorique d'une machine frigorifique à compression.

Soit le cycle de Carnot parcouru en sens indirect, c'est-à-dire en cycle frigorifique :

- -source chaude à T1,
- -source froide à To,
- -Qo est prise à la source froide,
- -Q1 est cédée à la source chaude.

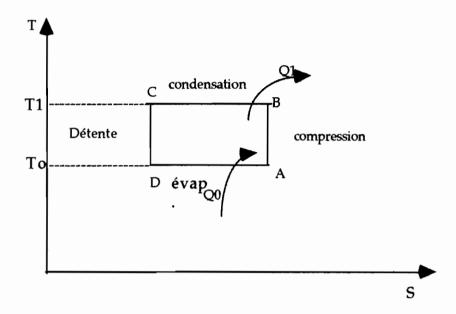


Fig. 3: Cycle frigorifique de Carnot dans le diagramme entropique

c) Expression du Travail à fournir

Le transfert de chaleur d'une source froide vers une source chaude étant impossible sans l'intervention d'un travail extérieur, le fonctionnement de la machine nécessite la présence d'une source extérieure d'énergie.

Le premier principe donne :

$$W + Q_1 + Q_0 = 0$$

==> $W = -(Q_1 + Q_0)$

d) Coefficient d'efficacité frigorifique Kf

C'est le rapport de la quantité de chaleur Q₀ soutirée à la source froide au travail à fournir à la machine W:

$$Kf = \frac{Q_0}{W}$$

e) Expression de Kf pour une machine frigorifique fonctionnent selon un cycle de

Carnot

$$Q_0 = T_0 * (S_A - S_D)$$

$$Q_1 = T_1 * (S_C - S_B) = T_1 * (S_D - S_A)$$

$$Kf_{max} = \frac{Q_0}{W} = \frac{T_0 * (S_A - S_D)}{-T_0 * (S_A - S_D) + T_1 * (S_A - S_D)}$$

$$\Rightarrow \mathbf{Kf}_{\mathbf{max}} = \frac{\mathbf{T}_0}{\mathbf{T}_1 - \mathbf{T}_0}$$

Kf est maximal pour une machine frigorifique fonctionnant selon un cycle de Carnot. Pour toute autre machine, Kf sera inférieur à Kfmax.

f) Modifications apportées au cycle théorique

Dans le cycle de Carnot précédemment étudié, le compresseur travaille en "régime humide" c'est-à-dire qu'il y a des gouttelettes liquides qui apparaissent dans le fluide, préjudiciables au bon fonctionnement du compresseur. Pour éviter cet inconvénient, on effectue la compression sur de la vapeur sèche.

Le compresseur aspire cette vapeur qui se surchauffe au cours de la compression (isentropique). Ainsi, le compresseur travaille en régime sec.

De plus, l'installation est simplifiée en remplaçant l'organe de détente isentropique par une simple vanne de laminage (détente de Joule-Thomson). Donc la détente ne sera plus isentropique mais isenthalpique.

Comme ces modifications sont les origines de beaucoup d'irréversibilités internes, on introduit un rendement exergétique qui exprime le défaut de ce cycle par rapport à celui de Carnot fonctionnant dans les mêmes conditions.

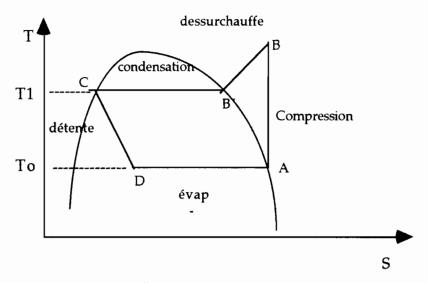


Fig. 4: Cycle théorique d'une machine frigorifique sur un diagramme T,S

2 Systèmes de réfrigération utilisant un cycle thermo-mécanique

exemple du cycle de RANKINE (figure 5)

Ces systèmes ont été les premières solutions utilisées pour la production du froid à partir de l'énergie solaire. Ils reçoivent de l'énergie chaleur, la convertissent en énergie mécanique qui est utilisée ensuite pour entraîner un système de réfrigération conventionnel à compression.

La chaleur est fournie au bouilleur du système par un capteur ou par un accumulateur thermique. La vaporisation du fluide de travail s'effectue dans le bouilleur; si nécessaire, la vapeur est séparée du liquide, puis traverse la turbine qui fournit du travail mécanique. Suivant le fluide de travail choisi, la vapeur traverse (ou non) ensuite un récupérateur de chaleur où elle cède une partie de son énergie avant de traverser le condenseur, où elle est liquéfiée. Le liquide condensé est pompé et traverse le récupérateur pour regagner le bouilleur.

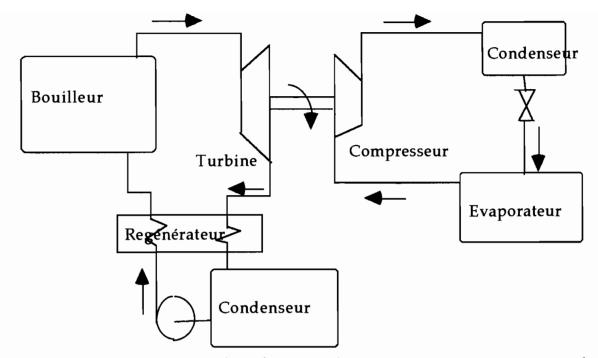


Fig. 5 : Système à cycle de Rankine et compression de vapeur

Le récupérateur sert à améliorer le rendement du système en transférant à l'alimentation du bouilleur l'énergie disponible à l'échappement de la turbine.

L'énergie mécanique obtenue grâce à cette machine thermique est utilisée pour entraîner un compresseur, soit directement, soit par l'intermédiaire d'un système électrique générateur-moteur.

On remarquera que le système complet comporte cinq échangeurs de chaleur, plus la turbine et le compresseur.

Les coefficients de performance de ces systèmes en expérimentation ne dépassent pas 0,6.

A cela, il faut ajouter le coût élevé de ces systèmes du fait du nombre de composants.

3 Systèmes de réfrigération à cycle purement thermique

Ces systèmes utilisent un cycle purement thermique à trois températures (cycles trithermes).

Fig. 6: Schéma de fonctionnement du cycle tritherme

Ils reposent sur des différences d'affinités entre deux corps, suivant leurs conditions thermodynamiques : pression, température, concentration. Pour qu'une telle affinité puisse se manifester et être exploitée, il est nécessaire que l'un des deux corps au moins ne soit pas gazeux, et qu'ils ne soient pas tous deux solides.

Lorsqu'il s'agit de l'affinité physique entre deux fluides (liquide - liquide ou liquide - vapeur), le phénomène est appelé absorption ; au contraire, l'affinité physique d'un solide pour un gaz est appelé adsorption.

Si l'on exclut, pour des raisons de simplicité et de fiabilité, la possibilité de faire circuler le solide de façon cyclique dans différents organes aux fonctions bien spécifiées, les systèmes utilisant un solide ne peuvent fonctionner de façon permanente : la réfrigération recherchée s'opère de façon intermittente, qui peut très bien s'adapter aux besoins eux-mêmes calqués sur un rythme journalier de la

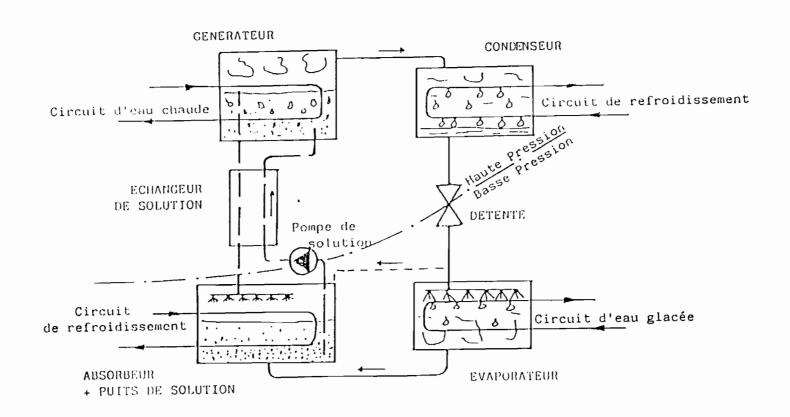
température (et parfois de l'occupation des locaux). Au contraire, l'utilisation d'affinités entre fluides seulement permet une circulation facile de ces fluides et donc un fonctionnement continu ; le fonctionnement intermittent reste bien entendu possible, et peut même diminuer le nombre de composants du système.

4 Machine à absorption à cycle permanent

a) Description de la machine (figure 7)

Le groupe frigorifique à absorption est composé de quatre échangeurs permettant un transfert d'énergie entre le mélange solvant-frigorigène du cycle d'absorption et trois sources extérieures à la machine. La chaleur est échangée grâce aux trois circuits d'eau chaude, d'eau glacée et d'eau de refroidissement qui matérialisent les trois niveaux de température de la machine tritherme. Le solvant et le frigorigène qui constituent le fluide de travail ont l'un pour l'autre une forte affinité.

Pour examiner comment fonctionne ce système, considérons d'abord le générateur.


On apporte de la chaleur à une solution de frigorigène et de solvant contenue dans le générateur, ce qui produit une évaporation du réfrigérant, qui se sépare du mélange en abandonnant une solution pauvre en réfrigérant. La vapeur produite pénètre dans le condenseur, où elle se liquéfie en cédant de la chaleur. L'ensemble du générateur et du condensateur constitue la partie à haute pression du système. Le frigorigène liquide accumulé dans le condenseur peut ensuite être détendu de cette zone à haute pression vers un évaporateur à basse pression, où il s'évapore en effectuant la réfrigération.

Après évaporation du frigorigène dans l'évaporateur et extraction de chaleur du milieu à réfrigérer, le frigorigène pénètre dans l'absorbeur. Dans celui-ci, la vapeur de frigorigène se recombine avec le mélange en provenance du générateur, pauvre en frigorigène.

Comme cette recombinaison est exothermique, il faut extraire de la chaleur de l'absorbeur afin de maintenir sa température suffisamment basse pour conserver l'affinité élevée dont on a besoin entre le frigorigène et la solution. La solution résultante, riche en frigorigène, est recueillie au fond de l'absorbeur et est repompée dans le générateur par une pompe de solution pour y maintenir un niveau requis et une concentration imposés. C'est cette même pompe qui assure la différence de pression requise dans le système.

La nécessité de faire circuler de façon continue, d'une part, la solution pauvre en frigorigène, depuis le générateur à température élevée jusqu'à l'absorbeur à basse température, et d'autre part la solution riche en réfrigérant, à contre-courant, suggère l'utilisation du récupérateur. C'est un simple échangeur de chaleur qui minimise les pertes de chaleur associées aux transferts de fluides entre les deux composants.

En l'absence du récupérateur, la charge thermique sur le capteur solaire et le rejet thermique associé à l'absorbeur seraient augmentés, d'où une diminution du coefficient de performance du système. Le système de réfrigération à absorption comprend donc cinq échangeurs de chaleur et une pompe, ainsi que la tuyauterie et la régulation nécessaires.

b) Réalisation d'un système de production de froid solaire (figure 8)

La filière de production de froid solaire par machine à absorption à cycle continu est constituée des ensembles suivants :

- système de collecte de l'énergie solaire,
- groupe frigorifique à absorption,
- stockage et distribution d'énergie.

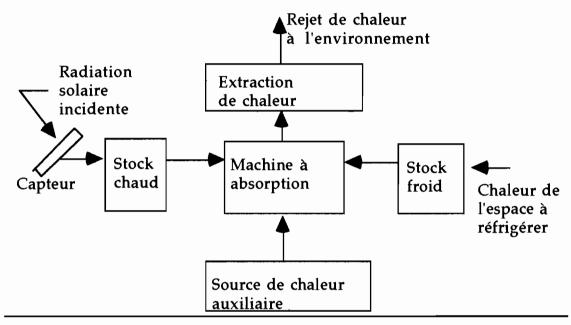


Fig. 8: Schéma de principe pour une réfrigération solaire

La machine consomme une énergie thermique directement fournie par le système capteur, il n' est pas nécessaire de transformer cette chaleur en travail.

DUMINIL propose de chiffrer le comportement du système grâce à un coefficient de performance frigorifique solaire défini par :

$$\varepsilon_{g} = \varepsilon_{f} \times n_{f} \times n_{cap}$$

 ε_f = efficacité théorique du cycle à absorption

 n_f = rendement exergétique du cycle à absorption

n_{cap} = rendement de captation

ou encore
$$\varepsilon g = COP_f \times n_{cap}$$

avec COP_f coefficient de performance frigorifique de la machine.

Le système décrit, et appréhendé grâce à ce coefficient ne tient pas compte du caractère aléatoire des deux phénomènes d'insolation et de besoin de froid pour climatiser le bâtiment. Une réponse est apportée à ce problème avec l'insertion de dispositifs de stockage sur l'installation. Cette opération peut cependant prendre des formes diverses selon le principe de stockage adopté : par chaleur sensible, latente ou sous forme chimique, et selon la forme d'énergie accumulée : chaleur fournie par le champ de capteurs, ou énergie frigorifique produite par le groupe. Ces considérations nécessitent la définition d'une gestion énergétique de l'installation qui s'appuie sur des critères résultants de travaux théoriques

l'installation qui s'appuie sur des critères résultants de travaux théoriques.

Cette approche doit être complétée par l'observation de résultats qui traduisent le comportement dynamique du système de climatisation. Il faut rappeler que la

fourniture énergétique solaire est caractérisée par de fortes variations journalières, saisonnières et, de plus, aléatoires. Il en va de même du besoin thermique du bâtiment qui dépend des paramètres variables comme les

conditions météorologiques, l'activité des locaux.

II - Le rayonnement solaire

1 - Données géométriques

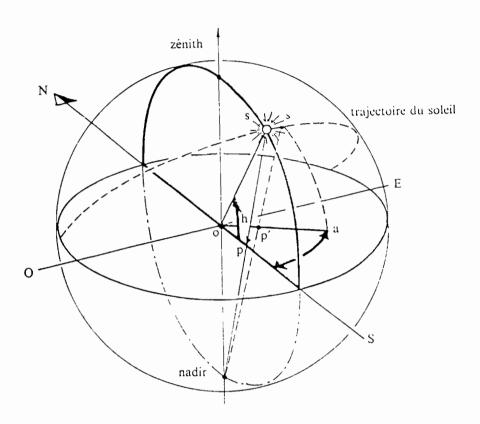


Fig.9: La course du soleil et sa projection stéréographique

a) Heure légale et heure solaire

L'heure solaire est définie par la rotation de la terre. Le midi solaire correspond au passage du soleil au méridien. Cette heure change au cours de l'année et à chaque méridien, ce qui n'est pas pratique. L'heure légale est commune à tout un fuseau horaire, et la durée de l'heure ne varie pas au cours du temps. On passe de l'heure légale à l'heure solaire H_{sol} par:

$$H_{sol} = Hlég + T/60 + L/15 - F$$
 (heure)

où $H_{\mbox{l\'eg}}$ est l'heure légale d'hiver. On ajoute une heure en été.

L'est la longitude exprimée en degré, positive à l'Est de Greenwich, négative à l'ouest. Le décalage est de 15 minutes par degré longitude.

F est le décalage entre l'heure légale du lieu et l'heure légale de Greenwich.

T est une correction variable au cours de l'année, donnée par l'équation du temps. Elle est due à la combinaison des rotations de la Terre sur elle-même et autour du soleil. L'équation du temps est approximativement donné (en minutes) par :

b) Hauteur et azimut du soleil

La position du soleil par rapport à un point sur la terre est déterminée par la hauteur h au dessus de l'horizon et par l'azimut a pris par rapport au Sud.

Ces deux paramètres dépendent eux-mêmes de la déclinaison d, qui est l'angle entre la direction du soleil et le plan de l'équateur, de la latitude \emptyset , et de l'heure solaire.

La déclinaison peut être calculée selon la formule approchée de Cooper :

La hauteur est alors donnée par :

$$\sin h = \sin d \sin \varnothing + \cos d \cos \varnothing \cos w$$

où w est l'angle horaire en degrés :

$$w = 15 (H_{sol} - 12)$$

et l'azimut, soit l'angle entre la direction du soleil et le plan du méridien par :

$$\sin a = \left(\frac{\cos d \sin w}{\cos(Arc\sin(\sin \varnothing \sin d + \cos \varnothing \cos d \cos w))}\right)$$

Si cos w < Tan d / Tan \emptyset , l'azimut est le supplément de l'angle a donné par l'équation précédente. L'azimut est positif vers l'Ouest, nul au Sud et négatif à l'Est. Sur la base de ces paramètres, il est aisé de déterminer à tout instant l'angle d'incidence θ des rayons solaires sur toute surface (par exemple un capteur solaire). Le plan tangent à la surface au point d'incidence étant défini par son angle de pente s (positif si la surface voit le sud), son azimut a et la latitude \emptyset du lieu, on obtient l'angle d'incidence en tout instant par :

Au niveau du sol, le rayonnement direct, provenant en droite ligne du soleil est donc diminué en intensité et son spectre est modifié. De plus, une composante diffuse apparaît, provenant du ciel bleu par beau temps, et des nuages plus ou moins gris par mauvais temps. L'intensité de ces deux composantes doit être prise en compte pour le calcul des gains solaires d'une installation quelconque. Une estimation grossière de ces composantes, valable en climat tempéré, est donnée à la figure 11.

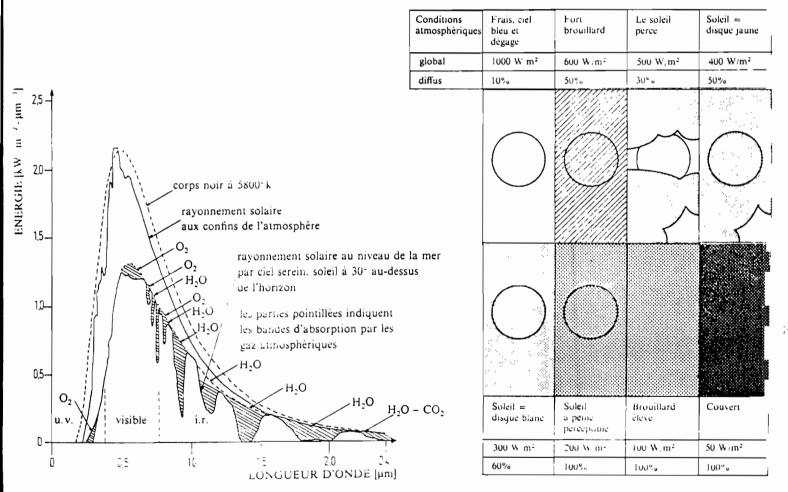


Fig.10: Spectre solaire

Fig.11: Intensites approximatives du rayonnement solaire.

III- Modélisation du groupe à absorption

Cette modélisation va être faite en établissant les équations de bilan de matière et d'énergie entre différents points particuliers du cycle (voir figure 12).

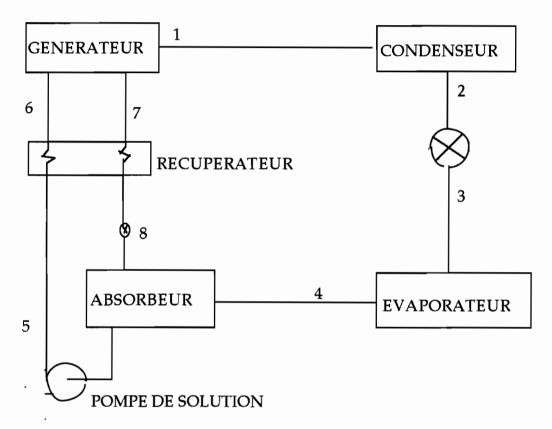


Fig.12: Schéma du groupe frigorifique à absorption

1-Rappels sur les diagrammes thermodynamiques

La mise en jeu, dans les équations caractéristiques de la machine à absorption, de mélanges binaires, rend plus difficile la description du cycle thermodynamique des constituants. Les diagrammes de représentation sont plus complexes et moins utilisés, à cause du moindre développement de ces procédés à l'échelle industrielle.

a) Loi des phases

La loi des phases décrit le nombre de degrés de liberté d'un système, c'est à dire le nombre de variables thermodynamiques nécessaires pour décrire son équilibre. Elle s'écrit pour un système à n composants et φ phases:

$$\mathbf{v} = \mathbf{n} + 2 - \mathbf{\varphi}$$

v est aussi appelée variance du système.

Pour la machine à absorption, cette règle peut être appliquée en considérant un régime permanent. Avec ce régime, l'équilibre est supposé atteint en tout point du cycle interne.

Ainsi pour le mélange LiBr- $\mathbf{H}_2\mathbf{O}$, en tenant compte de la présence des phases liquide et vapeur dans le cycle à absorption, on obtient v=2.

C'est ce résultat qui conditionne les différents types de représentation des propriétés du couple solvant-frigorigéne, et l'utilisation possible de ces diagrammes. Les variables thermodynamiques généralement retenues sont:

- -la pression
- -les températures en différents points des circuits de solution et de frigorigène
- -les enthalpies massiques du mélange
- -le titre massique de la solution.

MERKEL et OLDHAM ont proposé deux représentations classiquement retenues, pour étudier le comportement d'un mélange employé dans un cycle à absorption.

b) Le diagramme de MERKEL

Ce diagramme indique les caractéristiques thermodynamiques d'un mélange binaire à l'équilibre : température , titre , enthalpie massique et pression , et ce , quelque soit l'état de la solution liquide ou vapeur . Dans un plan isobare , les enthalpies massiques sont portées en fonction de la composition massique pour toutes les phases du couple considéré . La définition des courbes d'ébullition commençante et de rosée sépare le plan en trois zones , à savoir :

- Les liquides sous refroidis, aux faibles enthalpies

- Les mélanges diphasiques
- Les vapeurs surchauffées, avec de fortes valeurs d'enthalpie

Il est intéressant de noter que sur les axes verticaux, pour x=0 et x=1, sont portées les propriétés du solvant et du frigorigène pur. Les chaleurs latentes de ces corps correspondent aux segments définis par l'intersection avec les courbes de rosée et d'ébullition.

L'allure de l'isotherme portée dans le diagramme s'explique par ces remarques :

- Dans la zone liquide, les réactions de mélange sont exothermiques, le tracé est alors incurvé.
- En région de mélange des phases , l'isotherme est une droite , inclinée par rapport à la verticale du fait de l'écart en teneur des produits , dans chaque phase présente .
- Compte tenu de la faiblesse des chaleurs de réaction dans la zone des vapeurs , le graphe correspond à un segment de droite .

Ce graphique est souvent complexe, suivant le mélange étudié.

Une représentation tridimensionnelle, avec un axe gradué selon le logarithme des pressions, traduit le comportement de solutions binaires. (Voir figure 13).

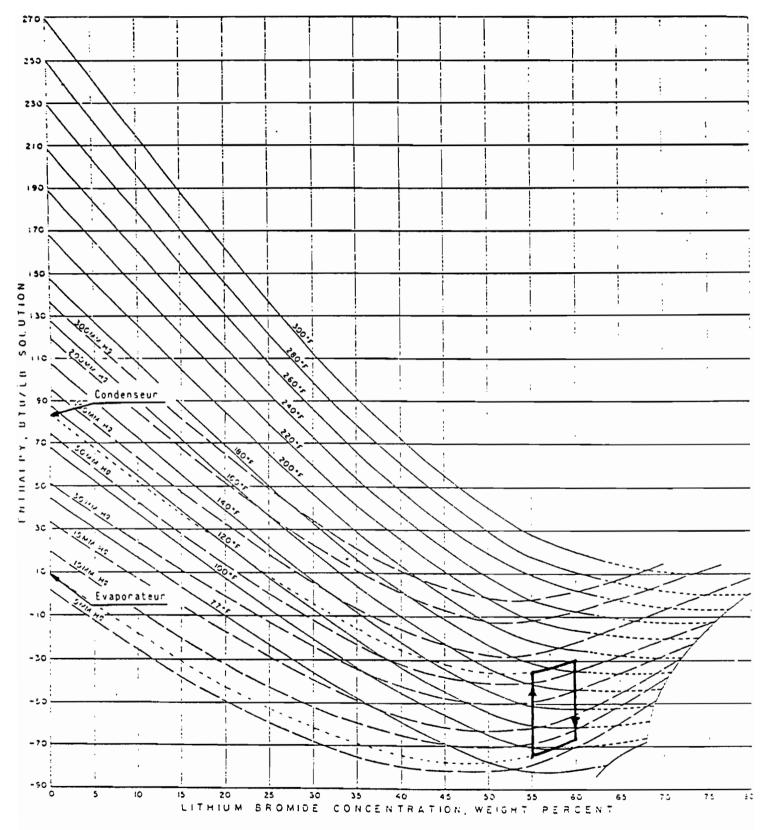


Fig.13: Diagramme de Merkel

c) Le diagramme de OLDHAM

La loi d'équilibre des mélanges peut-être approchée, grâce à un modèle mathématique : Log $P = A + \frac{B}{T} + ...$

avec T, P température et pression d'un système à l'équilibre.

A, B coefficients calculés en fonction du titre, pour un mélange particulier.

Les premiers termes ont les poids les plus forts, le graphe de log $P = f\left(\frac{1}{T}\right)$ coïncide avec des droites définies pour différentes valeurs de la concentration X.

Ce diagramme donne la pression en fonction de la température pour différentes solutions avec des titres donnés quelque soit l'état de la solution (liquide ou vapeur). Toutefois, dans l'application à la machine frigorifique à absorption, seul l'état liquide des solutions est considéré.

La représentation est bien adaptée pour détailler le cycle du couple de solution à l'intérieur de la machine. Elle visualise de manière claire les relations entre les grandeurs thermodynamiques. En A, la solution sort du puits de solution, à basse pression, riche en frigorigène ,elle subit l'effet de la pompe, traverse l'échangeur et pénètre dans le générateur où elle se chauffe puis cède progressivement du réfrigérant sous phase vapeur. Cette solution apporte ensuite de la chaleur au mélange qui lui succède au bouilleur, avant de se recombiner avec le réfrigérant produit sur l'évaporateur. Enfin , elle s'écoule dans le puits de solution pour y être pompée à nouveau.

Le cycle tracé présente plusieurs points particuliers auxquels sont associés des valeurs caractéristiques de températures, titres des pressions de la solution.

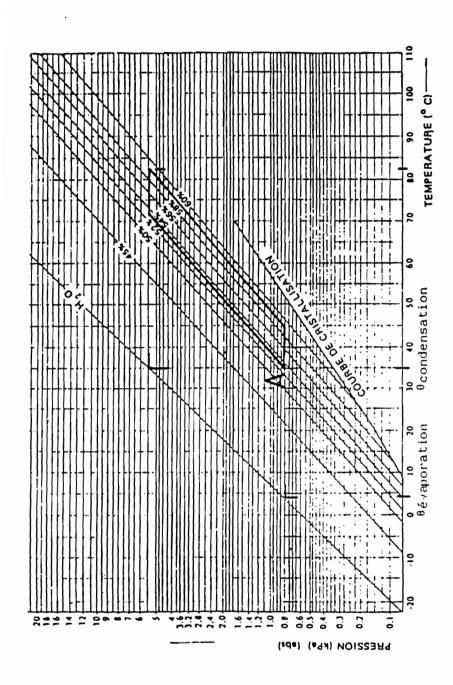


Fig.14:Diagramme de Oldham

d)Équations d'état des fluides de travail

Pour mettre sur pied le bilan thermique d'un composant quelconque et pouvoir dimensionner les surfaces de transfert thermique qui lui sont associées, il est nécessaire de connaître avec précision les enthalpies des fluides de travail à l'état liquide et gazeux en fonction de la température et de la concentration, ce que les diagrammes thermodynamiques de dimensions réduites ne permettent pas. Les relations ci-après ont été obtenues en ajustant des courbes sur les résultats expérimentaux. La température de référence pour les valeurs d'enthalpie est de 25°C.

-L'enthalpie de l'eau à la température T est:

$$h_{H2O}(T) = (T - 25) \text{ kcal / kg}$$

=4,185*(T-25) kJ/kg

-L'enthalpie de la vapeur saturée à la température T est:

$$h_{vap}(T) = (1,80 * T + 2365) kJ/kg$$

-L'enthalpie de la vapeur surchauffée à la température T1 et à une pression égale à la pression de saturation de la température T2 est:

$$h_{vs}(T1,T2) = (1,925 *T1 - 0,125 *T2 + 2365) kJ/kg$$

-La chaleur massique d'une solution de LiBr de concentration x a pour valeur:

$$c_p(x) = (2.01 * x^2 - 5.15 * x + 4.23) kJ/kg.°C$$

-L'enthalpie d'une solution de LiBr de concentration x est donnée par:

$$h(x,T) = 1744 * x^2 - 1911 * x + 285 + c_p(x) * (T - 25) kJ/kg$$

-La courbe caractéristique de l'eau donne :

pour T>0°C
$$p = \exp(\frac{17,279 * T}{237,4765 + T} + 6,4146)$$
 Pa

2- Étude des éléments de la machine

a) Le générateur

1) Description (figure 15)

Le liquide, riche en frigorigène, entre dans le générateur en (6), où il est partiellement vaporisé grâce à l'énergie apportée par le circuit d'eau chaude ; les deux phases résultantes sont : une vapeur de réfrigérant (1) et une solution concentrée de l'absorbant (7).

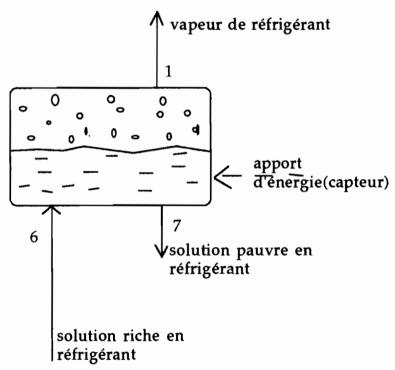


Fig.15: Schéma du générateur

Notons que les températures d'évaporation du LiBr et de l' $\mathbf{H_2O}$ sont très éloignées, c'est pourquoi il n'est pas nécessaire de rectifier le frigorigène généré contrairement au mélange $\mathbf{NH_3} - \mathbf{H_2O}$.

La chaleur prélevée du circuit d'eau chaude, permet :

- l'apport de chaleur sensible pour le réchauffage de la solution riche en réfrigérant jusqu'au début de l'évaporation de ce dernier ;
- l'évaporation du frigorigène et l'élévation de température progressive du mélange restant;
- la séparation des deux composants du couple de solution : chaleur de dilution.

L'évaporation et la séparation sont simultanées.

2) L'échange de matière

La réaction de désorption au générateur engendre un transfert de matière entre phases ; la solution entrante cède une part de son eau liquide qui se vaporise. Cette opération s'apparente au phénomène de distillation utilisé dans le raffinage du pétrole.

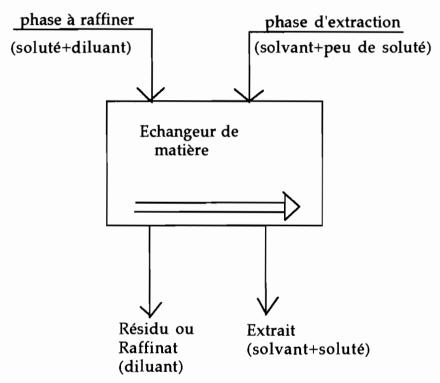


Fig.16: Échangeur de matière

L'eau constitue ici le diluant et le solvant. Le soluté est le Libr. L'objectif est la purification du diluant (l'eau).

Pour l'étude, on considère que les corps en présence sont en équilibre thermodynamique c'est à dire que les températures, pression, potentiel chimique de chaque constituant sont identiques dans chaque phase;

c) Équations caractéristiques du cycle suivi dans le générateur

Si on néglige les déperditions vers l'ambiance, et pour un régime permanent de fonctionnement, le bilan d'enthalpie donne :

 $\dot{Q}g = \dot{m}1 * h1 + \dot{m}7 * h7 - \dot{m}6 * h6$

La conservation de la matière donne:

-conservation globale: $\mathbf{m}1 + \mathbf{m}7 = \mathbf{m}6$

-conservation du LiBr: $\mathbf{m}6 * \mathbf{x}6 = \mathbf{m}7 * \mathbf{x}7$

avec:

hi: enthalpie massique au point i,

x6,x7: titres respectifs des solutions riche et pauvre en réfrigérant

mi: débit solution au point i

b) L'absorbeur

1) Description (figure 17)

La solution pauvre en réfrigérant provenant du générateur absorbe lors de sa chute la vapeur de réfrigérant provenant de l'évaporateur. Cette vapeur se liquéfie en cédant sa chaleur au circuit de refroidissement. Le mélange obtenu à basse pression est repompé vers le générateur. L'absorbeur constitue ainsi un échangeur de matière et de chaleur.

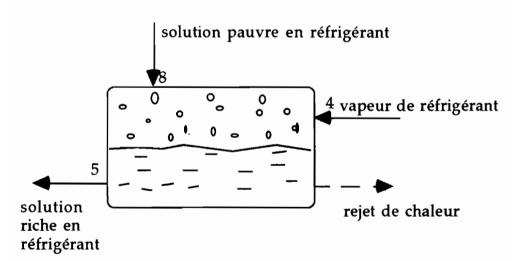


Fig.17: Schéma de l'absorbeur

Deux phases d'échange de chaleur se déroulent lors du processus d'absorption :

- la solution pauvre en réfrigérant subit un refroidissement sans modification de concentration, l'énergie cédée est uniquement sensible ;

- le processus d'absorption du frigorigène modifie la concentration du mélange ;

les chaleurs dégagées sont sensible (différence de températures), chimique avec la

dilution et latente avec la liquéfaction du réfrigérant. Ainsi dans l'absorbeur, le

réfrigérant est totalement absorbé par le LiBr. Cette réaction a un caractère très

exothermique, ce qui fait qu'une grande quantité de chaleur doit être évacuée.

Pour le calcul, il est possible de connaître les quantités de chaleur mises en jeu par

la connaissance des variables d'état: température, pression et titre des solutions.

2) Équations du cycle dans l'absorbeur

L'hypothèse de l'équilibre thermodynamique des constituants reste posée.

Les pertes thermiques sont négligées. Le bilan d'enthalpie donne:

 $\dot{Q}a = \dot{m}4*h4 + \dot{m}8*h8 - \dot{m}5*h5$

La conservation de la matière donne:

-conservation globale: m4+m8=m5

-conservation du LiBr: $\dot{m}8*x7 = \dot{m}5*x6$

avec:

hi: enthalpie massique au point i

mi: débit solution au point i

c) L'échangeur de solution

Il permet de diminuer les puissances du générateur et de l'absorbeur en

permettant un transfert d'énergie du mélange pauvre en réfrigérant provenant

du générateur au mélange riche en réfrigérant provenant de l'absorbeur. Cette

diminution de puissances permet une double économie : les surfaces d'échange

sont réduites et les quantités d'énergie rejetée et fournie sont moindres.

Cet échangeur de solution est caractérisé par :

-sa puissance qui est égale à la quantité de chaleur reçue par chaque fluide en un

instant:

 \dot{Q} ech = \dot{m} 6* cp6 * (T6 - T5) = \dot{m} 7* cp7 * (T7 - T8)

28

cp6, cp7: chaleurs massiques des solutions riche et pauvre en réfrigérant -son efficacité exprimée ainsi:

eff_ech =
$$\frac{T7-T8}{T7-T5}$$
 = 1 - exp(-NUT)

Cette efficacité est liée au nombre d'unités de transfert(NUT) avec

$$NUT = \frac{k*S}{qtmin}$$

avec:

S: surface d'échange (**m**²)

k: coefficient d'échange (W/m²)

qtmin: minimum entre les débits de capacité (m6*cp6) et (m7*cp7)

Dans cette relation S et k dépendent de la géométrie de l'échangeur et de la configuration de l'écoulement qui sont fixées pour de bon à la conception de l'appareil. Cependant, les débits de capacité dépendent du régime de fonctionnement de l'échangeur (à charge partielle ou totale). Toutefois, on peut considérer la constance de cette efficacité dans cette étude, l'erreur ne dépassant pas 10 %. [2]

d) Dispositifs technologiques

1) La pompe de solution

Elle assure la circulation du mélange riche en réfrigérant du puits de solution vers le générateur, à travers l'échangeur. Elle est dimensionnée de manière à permettre le passage de basse à haute pression, et à s'opposer aux pertes de charge dans le circuit et l'échangeur de solution.

2) Le puits de solution

Cet appareil reçoit tous les fluides qui circulent dans le groupe et provoque donc une reconstitution permanente de la solution à la concentration initiale x6. La présence continue de mélange dans ce réservoir est une assurance pour le constructeur de la bonne tenue mécanique de la machine, la pompe de solution est régulièrement et constamment alimentée en solution liquide.

d) Le condenseur

La vapeur de réfrigérant générée au bouilleur se liquéfie sur le faisceau d'échange. La pression qui règne dans la calandre du condenseur correspond à l'équilibre liquide-vapeur du frigorigène.

La condensation d'un corps pur se fait à température constante, avec un dégagement de chaleur latente. La chaleur sensible mise en jeu est nulle du fait que le refroidissement de la vapeur qui entre dans la calandre est négligé. La puissance du condenseur s'exprime ainsi:

$$\dot{\mathbf{Q}}\mathbf{c} = \dot{\mathbf{m}}\mathbf{1} * (\mathbf{h}\mathbf{1} - \mathbf{h}\mathbf{2})$$

h1, h2: enthalpies massiques respectives entrée et sortie condenseur . m1: débit massique de vapeur

e) Le détendeur

Le réfrigérant condensé s'écoule dans cet appareil où il subit une détente isenthalpique supposée parfaite. Cette hypothèse donne:

$$h2=h3$$

h2, h3: enthalpies massiques respectives entrée et sortie détendeur

f) L'évaporateur

L'énergie prélevée sur le circuit d'eau glacée du groupe à absorption, source froide de la machine, provoque un changement de phase du frigorigène liquide. Le réfrigérant subit dans l'échangeur un changement de phase sans préchauffage sensible du frigorigène, ni surchauffe de la vapeur. La puissance de l'évaporateur s'exprime:

$$Qe = m1*(h4-h3)$$

h3, h4: enthalpies massiques entrée et sortie évaporateur

3-Système d'équations

L'introduction des relations d'état des fluides de travail dans les formules d'expression des bilans d'énergie et de matière, conduit à écrire le système d'équations.

a) Équilibre des produits du cycle
php = exp(
$$\frac{17,279*Tc}{237,4765+Tc}$$
 + 6,4146) (Pa)
pbp = exp($\frac{17,279*Te}{237,4765+Te}$ + 6,4146) (Pa)
php=fonction de (Tg, x7)
pbp=fonction de (Ta, x6)

avec:

Tc, php: température et pression de condensation du frigorigène Te, pbp: température et pression d'évaporation du frigorigène Tg, x7: température générateur et titre solution pauvre en frigorigène Ta, x6: température absorbeur et titre solution riche en frigorigène

b) Équations de conservation de débit et du LiBr

$$\dot{m}6 = \dot{m}1 + \dot{m}7$$

$$\dot{m}6 * x6 = \dot{m}7 * x7$$

$$\dot{m}4 = \dot{m}1$$

$$\dot{m}5 = \dot{m}6$$

$$\dot{m}8 = \dot{m}7$$

avec:

mi: débit massique au point i

c)Étude thermique des éléments

h1(Tg,Tc) = 1,925* Tg - 0,125* Tc +2356
h2(Tc) = 4,185* (Tc - 25)
h3 = h2
h4(Te) = 1,80 * Te + 2365
cp(x6) = 2,01* x6² - 5,15* x6 + 4,23
h5(x6,Ta) = 1744* x6² - 1911* x6 + 285 + cp(x6)* (Ta - 25)
cp(x7) = 2,01* x7 - 5,15* x7 + 4,23
h7(x7,Tg) = 1744* x7² - 1911* x7 + 285 + cp(x7)* (Tg - 25)
T8 = Tg - eff_rec* (Tg - Ta)
h8(x7,T8) = 1744* x7² - 1911* x7 + 285 + cp(x7)* (T8 - 25)
h6 = h5 + (h7 - h8) * m²/m²
évaporateur: qe = h4 - h3
condenseur: qc = h1 - h2
générateur: qg =
$$\eta$$
7* h7 + h1 - η 6* h6
absorbeur: qa = η 7* h8 + h4 - η 5* h5
 m 1 = $\frac{Wfrigo}{m}$
 η 7 = $\frac{m²}{m}$ = $\frac{x6}{x^7-x6}$
 η 5 = η 6 = $\frac{m6}{m1}$ = $\frac{x7}{x^7-x6}$
COP = $\frac{qe}{qg}$

avec:

hi: enthalpie au point i,

cp(x6): chaleur massique de la solution de titre x6,

cp(x7): chaleur massique de la solution de titre x7

Te: température à l'évaporateur,

Ta: température à l'absorbeur,

Tg: température au générateur,

Tc: température au condenseur,

η5 = η6: taux de recirculation du générateur,

η7: taux de recirculation de l'absorbeur,

Wfrigo: charge frigorifique désirée,

Les puissances des différents éléments s'expriment ainsi:

évaporateur: $\dot{Q}e = \dot{m}1*qe$

condenseur: $\dot{Q}c = \dot{m}1*qc$

générateur: Qg = m 1* qg

absorbeur: Qa = m1 * qa

4-Résolution

Les données du problème sont les températures des différents éléments de la machine: générateur, condenseur, évaporateur, absorbeur. Ces températures fixent ainsi les conditions de fonctionnement de la machine, en ce sens qu'elles sont déterminées par les sollicitations externes du groupe à absorption: températures et débits sur les trois sources thermiques.

La démarche utilisée ici devra d'une part aider à la conception et au choix d'une machine pour une application donnée; et d'autre part elle pourra permettre l'étude d'une machine donnée pour des conditions de sollicitations données. En d'autres termes, cette démarche est orientée sur deux sens: la conception et la simulation.

a) La conception

La procédure de conception permet une évaluation de la capacité thermique des différents éléments de la machine pour un choix éventuel de ces derniers.

L'organigramme suivant visualise clairement les étapes de ce calcul.

Avec les conditions de fonctionnement suivantes:

-Tg=90,6°C

-Tc=43,3°C

 $-Ta=37.8^{\circ}C$

 $-Te=4,4^{\circ}C$

-Wfrigo=10,53kw

le programme donne les résultats suivants:

-x6=0,57kg LiBr/kg solution et x7=0,607kg LiBr/kg solution

-m6 = 0.0752 kg/s = 271 kg/h

 $-\dot{Q}e = 10,53 \text{ kw}; \dot{Q}g = 13,6 \text{ kw}$

 $-\dot{Q}c = 11,3 \text{ kw}; \ \dot{Q}a = 12,85 \text{ kw}$

-COP = 0.78

b) La simulation

Elle va nous permettre de connaître l'influence des divers paramètres externes sur une machine à absorption donnée. Pour cela, on considère une machine dont les paramètres nominaux correspondent à ceux donnés dans la phase précédente:

- -titre solution initiale dans la machine x6=0,57 kgLiBr/kg solution,
- -débit nominal pompe de solution $\dot{m}6 = 0.0752 \text{ kg/s} = 271 \text{ kg/h}$
- -température nominale du générateur Tg_nom=90,6°C,
- -température nominale du condenseur Tc_nom=43,3°C
- -température nominale de l'absorbeur Ta_nom=37,8°C,
- -température nominale de l'évaporateur Te_nom=4,4°C
- -puissance frigorifique nominale Wfrigo_nom=10,53 kw

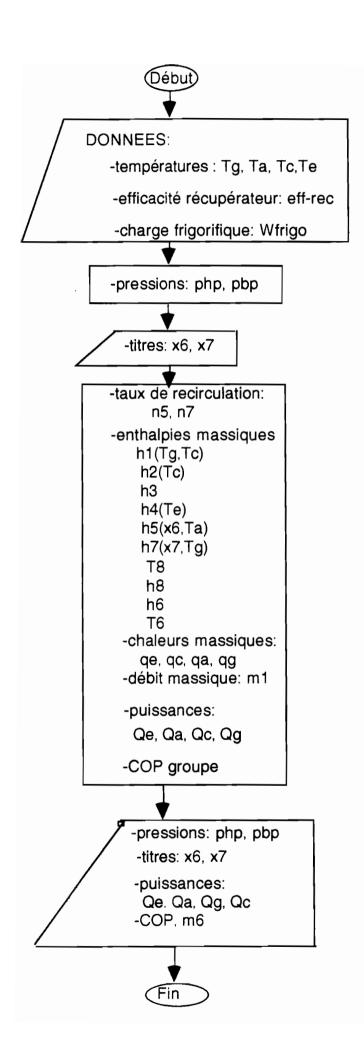
Donc, lorsque ce n'est pas l'influence d'une grandeur qui est observée, celle-ci est prise égale à la valeur nominale donnée ci-dessus.

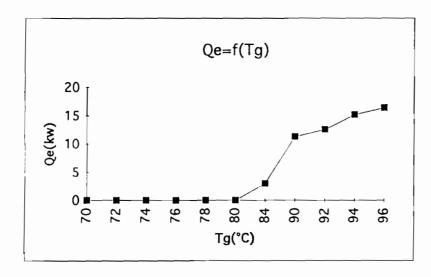
Les températures dont les influences sont étudiées dépendent des sollicitations externes du groupe (débits et températures eau chaude, eau froide et eau de refroidissement).

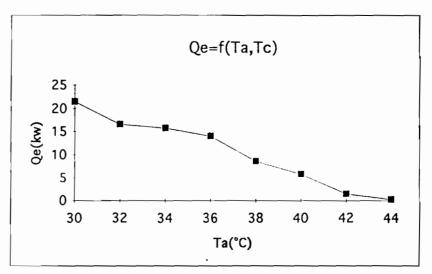
Les performances réelles d'une machine sont données en annexe(figures 18 et 19). Ces courbes montrent que l'augmentation de la température au générateur accroît les performances de la machine. Pour la température de rejet de chaleur, son augmentation détériore les performances du groupe. Les résultats trouvés dans cette phase de simulation devront donc confirmer ce qui est obtenu en expérimentation.

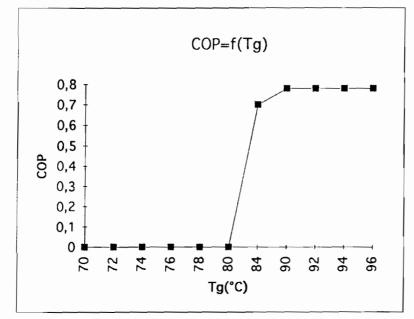
1) Influence de la température au générateur:

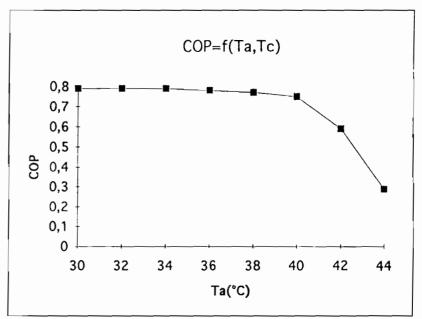
Après observation des courbes, on remarque qu'il existe une température minimale pour le fonctionnement de la machine. A partir de ce minimum, toute augmentation de Tg se solde par un accroissement de la puissance frigorifique et du COP. Cependant, à partir d'une valeur de Tg, le COP devient constant, même si l'accroissement de la capacité de réfrigération reste permanente. Cette valeur de Tg correspond à la valeur nominale Tg_nom. Ce résultat nous apprend qu'il n'est pas nécessaire d'augmenter indéfiniment la température de l'eau chaude pour avoir de bonnes performance du groupe. En général, pour les machines à absorption au LiBr, des températures d'eau chaude inférieures à 100°C suffisent; les températures au delà de ce seuil pouvant induire des phénomènes de cristallisation de la solution.


En outre, la croissance de la fonction Qe=f(Tg) prouve ce qui a été considéré précédemment : la capacité de réfrigération du groupe est en phase avec le besoin de réfrigération du local. En effet, la température au générateur et la charge frigorifique à l'évaporateur dépendent en grande partie du rayonnement solaire. Ainsi, si l' intensité du rayonnement s'élève, la capacité de captation des capteurs solaires s'accroît, par contre, la charge du bâtiment climatisé augmente en même temps.


2) Influence de la température de rejet de chaleur


Cette influence est analysée par l'observation de la variation de la capacité de réfrigération et du COP en fonction des températures de l'absorbeur et du condenseur. Dans les graphiques, seule la température à l'absorbeur est


représentée; mais, on a considéré que la température au condenseur est toujours égale à celle de l'absorbeur plus 6°C. Cette façon de faire a été prise car les constructeurs font rentrer l'eau de refroidissement dans l'absorbeur avant le générateur; en effet, la température à l'absorbeur est toujours plus faible que celle du condenseur.


Dans les courbes, on observe que le COP et la capacité de réfrigération varient en sens contraire des températures de l'absorbeur et du condenseur, donc de la température de l'eau de refroidissement. Pour une plage de températures (Ta<40°C et Tc<46°C), le COP est presque égale à 0,8. Ceci nous indique qu' il est plus intéressant de faire fonctionner le groupe à absorption dans cette plage. Tout fonctionnement en dehors de celle-çi se traduit par une détérioration des performances.

5- Environnement énergétique des systèmes de réfrigération solaire a) Les capteurs solaires

Les capteurs constituent la source où est captée l'énergie thermique nécessaire au bon fonctionnement de la machine frigorifique. Le principe de captation solaire étant l'absorption des rayons lumineux, l'élément fondamental est une surface constituée d'un corps noir. Le capteur doit transmettre l'énergie absorbée par ce corps noir à un fluide caloporteur. Pour augmenter cette captation, divers capteurs ont été développés (à double vitrage, à tubes sous vide etc.). Le rendement est un critère très important de choix des capteurs. Il est défini par le rapport entre la différence des températures du capteur Tc et de l' environnement extérieur du capteur Tc et la variation de la puissance incidente Er. Ce rendement dépend aussi des caractéristiques de fabrication du capteur. Ces caractéristiques sont résumées par deux nombres: le rendement optique $\sqrt{\ }$ et le coefficient surfacique de perte thermique μ . Les constructeurs s'efforcent d'élever la valeur de $\sqrt{\ }$ et de diminuer celle de μ . Les ordres de grandeurs pour divers capteurs sont représentés dans le tableau ci-dessous.

TYPE DE CAPTEUR	√	μ(W/m2.°K)
sans vitrage	0,9	20
simple vitrage	0,8	8
double vitrage	0,7	4,5
simple vitrage avec revêtement sélectif	0,8	5
double vitrage avec revêtement sélectif	0,7	3

Le rendement du capteur est exprimé comme suit:

$$\eta = \nu - \mu * \frac{(Tc-T0)}{Er}$$

Er est la puissance incidente en W/m2

Tc et T0 sont les températures du capteur et de l'environnement extérieur du capteur en °C.

b) Accumulation d'énergie

Pour faire face à une intermittence des besoins en froid et de l'énergie solaire, il est nécessaire de prévoir une accumulation d'énergie. Cette accumulation se fait sous forme de stock froid ou de stock chaud. L'accumulateur froid sera un réservoir (récipients ou longues tuyauteries) ayant une capacité de 25 à 50 litres d'eau glacée par m² de capteur [3]. L'accumulateur chaud doit avoir une capacité 50 à 75 litres d'eau par m² de capteur [3]. Les réservoirs d'accumulation doivent être suffisamment isolés.

c) Reiet de chaleur

L'importance à accorder à la température de rejet de chaleur doit conduire à un bon dimensionnement des tours de refroidissement. Les tours humides sont les plus utilisées du fait de leurs performances; cependant, comme elles requièrent un entretien très soigné, les tours sèches sont de plus en plus développées, surtout pour les applications résidentielles. Comme la température de rejet des tours sèches est beaucoup plus élevée que celle des tours humides (de 10 à 20%), il faut compenser la dégradation des performances résultant de leur utilisation par un relèvement de la température d'eau chaude avec une utilisation de capteurs plus performants(capteurs à tubes sous vide par exemple).

d) Sources d'énergie auxiliaires

Beaucoup d'autres sources d'énergie peuvent être disponibles comme appoint à l'énergie solaire. Par exemple, au Sénégal, nous pouvons noter le développement actuel que connaît le gaz.

IV- Évaluation des charges

1-Synthèse

L'importance d'une évaluation très précise des charges thermiques dans un local à climatiser n'est plus à démontrer. En effet, une surévaluation de ces charges amène à concevoir des installations de grandes puissances inutilement coûteuses, par contre, par une sous estimation de ces mêmes charges on obtient des installations trop faibles, ne donnant pas satisfaction.

Les charges thermiques vont dépendre des conditions extérieures de base, des différents besoins auxquels doivent répondre les conditions d'ambiance et du type de structure.

2- Conditions extérieures

L'environnement extérieur est constitué par l'ensemble des facteurs climatiques, susceptibles d'influencer le milieu. Il est caractérisé par les conditions extérieures qui seront l'un des points de départ pour déterminer la puissance des installations de climatisation.

a) Les facteurs climatiques

Les facteurs climatiques qui influent directement sur notre environnement intérieur sont au nombre de trois :

- La température sèche de l'air extérieur
- La température humide ou le degré hygrométrique
- -Le rayonnement solaire.

b) La température sèche extérieure

C'est une donnée fondamentale pour le calcul des charges de climatisation, pour le choix du fluide frigorigène et le dimensionnement de l'évaporateur et du condenseur. La variation journalière de la température sèche est très voisine d'une sinusoïde. Quelque soit le lieu ou la saison, on constate au

température humide de l'air. La température humide extérieure suit sensiblement les mêmes variations diurnes que la température sèche extérieure. Par contre, le degré hygrométrique suit les variations inverses : à un minimum de la température humide correspond un maximum de degré hygrométrique extérieur. L'humidité relative de l'air est maximale avant le lever du jour ; c'est ce qui explique la rosée matinale.

d) Variation de la température sèche extérieure et de la température humide en fonction du type de climat

En climatisation, on définit un type de climat par les caractéristiques suivantes :

- valeurs maximales des températures sèches et humides
- amplitudes des variations diurnes et annuelles des températures sèches et humides
- valeurs moyennes de ces températures
- amplitude des variations de l'humidité absolue.

On distingue cinq types de climat :

- le climat tropical
- le climat océanique
- le climat tempéré
- le climat nordique
- le climat désertique

1) climat tropical (DAKAR)

Il est caractérisé par :

- une température moyenne annuelle très élevée : θ m > 25°C
- un degré hygrométrique et une teneur en humidité très élevée : $\phi_m > 50\% \ \text{et} \ \Gamma > 15 \ \text{g} \ / \ \text{kg as}$

- des variations diurnes ou annuelles de la température qui sont relativement faibles
- d'importantes variations de l'humidité absolue d'une saison à une autre (saison sèche / saison humide).

2) Climat océanique (BRETAGNE)

Il est caractérisé par :

- une température moyenne annuelle entre 10 et 20°C
- un degré hygrométrique et une teneur en humidité relativement élevés $\phi_m > 60\%$ et $\Gamma > 10g / kg$ a.s.
- de faibles variations de températures (inférieures à 5°C).

3) Climat tempéré (PARIS)

Il est caractérisé par :

- une température moyenne annuelle modérée
- un degré hygrométrique moyen entre 30 et 50%
- des variations de température entre 5 et 10°C

4) Climat nordique (SIBÉRIE)

Il est caractérisé par :

- une température moyenne très basse θ m <10°C
- un degré hygrométrique moyen relativement faible $\varphi_m < 50\%$
- de grandes variations de température 10 à 20°C

5) Climat désertique (SAHARA)

Il est caractérisé par :

- une température moyenne annuelle très élevée: θ m >25°C
- un degré hygrométrique et une teneur en humidité très faible : φ_m < 45%
- de très grandes variations de température diurne et annuelle (40 à 50°C°).

e)Le ravonnement solaire

Le rayonnement solaire qui a été étudié précédemment influence de manière considérable les charges thermiques d'un bâtiment donné. Cette influence se fait principalement en apports à travers les vitrages, les ouvertures et le chauffage des parois.

f) Calcul des apports extérieurs

1) Parois opaques

Parois extérieures du bâtiment :

w / m2°C	→	<u></u>	
he	17	20	20
hi	9	11	6


Dans le cas où la vitesse u > 4 m/s = = > hi = 8 + 3.8.u

he = coefficient de convection extérieur

hi = coefficient de convection intérieur

he > hi

Cloisons intérieures :

La valeur du coefficient partiel est la même dans les deux faces.

Notion de température extérieure virtuelle:

Cette notion a été introduite pour pallier au décalage horaire entre le moment où la chaleur transmise au local à travers les parois est maximale et le moment où la température extérieure est maximale. Ce décalage est dû aux facteurs suivants :

- la température de l'air extérieur varie au cours d'une journée
- la durée de l'insolation des parois varie avec leur orientation
- l'inertie thermique des parois est fonction de leur structure.

Donc la température extérieure virtuelle en un instant donné, est une température extérieure qui produirait en régime permanent un apport calorifique identique à celui que produisent les parois extérieures en régime variable au même instant.

Dans la pratique, le calcul des apports par les parois extérieures fait plutôt intervenir l'écart virtuel de température

$$\Delta \theta_{ev} = \theta_{ev} - \theta_{i}$$

Les apports par les parois extérieures se calculent par l'utilisation de la relation

$$\dot{\mathbf{Q}} = \mathbf{K} \cdot \mathbf{S} \cdot \Delta \theta \mathbf{e} \mathbf{v}$$

Q= apports d'énergie chaleur par une paroi extérieure [w]

K= coefficient global de transfert de chaleur $[W/m^2.^{\circ}C]$

S= Aire de la paroi à travers laquelle se fait l'apport d'énergie chaleur [m2]

 $\Delta \theta ev = \text{ \'ecart virtuel de temp\'erature en [°C]}$

Les tableaux N°1 et 2 donnent les écarts virtuels de température pour les toits avec ou sans plafond et pour les murs. Ces données ont été calculées pour une température de 25,5°C à l'intérieur des locaux, une température extérieure maximale de 35°C, une température extérieure moyenne de 29,4°C avec une variation journalière de 12°C et une radiation solaire correspondante à celle du 21 Juillet à la latitude de 40°Nord. Pour d'autres conditions, il est nécessaire de corriger les valeurs de ces tableaux.

- correction de l'écart virtuel de température pour les toits

$$(\Delta\theta_{ev})_{corr} = \{(\Delta\theta_{ev} + LM) \cdot k_c + (25, 5 - \theta ir) + (\theta_{ex} - 29, 4)\}.f$$

 $\Delta\theta_{ev}$ est lu sur la table N°1

LM est le facteur correctif latitude - mois donné par la table N°3

K est un facteur correctif lié à la couleur

Kc = 1 si la coloration est sombre

Kc = 0.5 si elle est claire

(25,5- θ_{ir}) est la correction de la température interne du local

 $(\theta_{ex}$ -29,4) est la correction de la température moyenne extérieure

f est un facteur correctif lié à la présence de ventilateurs ou de conduits en dessous du plafond.

f = 1 si pas de conduits et de ventilation

f = 0,75 si plafond isolé et ventilation installée entre le plafond et le toit.

- Correction de l'écart virtuel de température pour les murs

$$(\Delta \theta_{ev})_{corr} = (\Delta \theta_{ev} + LM) \cdot k_c + (25, 5 - \theta_{ir}) + (\overline{\theta}_{ex} - 29, 4)$$

avec

Kc = 1 pour une couleur sombre

Kc = 0,83 pour une couleur médiane (vert, jaune, bleu)

Kc = 0,65 pour une couleur claire

2) Transmission de chaleur à travers les vitrages

Le flux total de chaleur à travers le vitrage est composé du flux par conduction et du flux par rayonnement.

Le flux par conduction est lié au gradient de température entre l'intérieur et l'extérieur:

$$\dot{\mathbf{Q}} = \mathbf{K} * \mathbf{S} * \Delta \theta \mathbf{e} \mathbf{v} \mathbf{corr}$$

K = coefficient global de transfert de chaleur à travers le vitrage en W/m^2 .°K

S = surface de vitrage en m²

 $\Delta \theta ev_{corr}$ écart virtuel de température corrigé

$$\Delta \theta \text{ev}_{\text{corr}} = \Delta \theta_{\text{ev}} + (25, 5 - \theta i) - (29, 4 - \theta ex)$$

Δθev est donné par la table 23.

Le flux par rayonnement est dû à la radiation transmise à travers le vitrage et au flux de chaleur rentrant dans le local lié à la radiation solaire absorbée.

Les tableaux N° 4 à 9 donnent pour les latitudes de 0 à 50° Nord, pour chaque mois de l'année et chaque heure de la journée ces apports pour un vitrage ordinaire (épaisseur de 3 mm) simple dont les surfaces ne sont pas spécialement traitées et ne comportant aucune protection antisolaire extérieure ou intérieure au local en fonction de l'orientation du vitrage.

Les valeurs de ces tableaux ont été calculées d'après les hypothèses suivantes :

- L'encadrement du vitrage est en bois et représente environ 15% de la surface de l'ouverture de la fenêtre dans le mur extérieur. Pour les châssis métalliques, on considérera que la surface du vitrage représente la totalité de la surface de l'ouverture de la fenêtre; ensuite, on multipliera par 1,17 les valeurs des apports effectifs du vitrage lues sur les tableaux 4 à 9.
- Les valeurs fournies par les tableaux correspondent à l'altitude 0 et aux conditions de troubles minimales. Lorsque l'altitude sera différente de 0 , le tableau 10 donne le coefficient de correction à appliquer aux valeurs d'apport effectif en fonction des diverses conditions de trouble de l'atmosphère , de l'heure solaire et de l'altitude. Ces valeurs sont établies pour certaines latitudes seulement; pour d'autres latitudes, il faut effectuer des interpolations.

Apports réels des vitrages :

Les apports réels par ensoleillement des vitrages sont nettement inférieurs aux apports effectifs précédemment calculés en raison de plusieurs facteurs :

- l'inertie thermique des parois
- l'utilisation éventuelle de vitres spéciales.
- la protection éventuelle des vitres

Pour ces trois facteurs, des coefficients ont été calculés à appliquer aux apports.

Pour prendre en compte l'inertie des parois , il est nécessaire de chercher le coefficient N qui dépend du fonctionnement de la climatisation (continu, pendant 18 heures, ou pendant 12 heures), de la présence ou non d'écrans

intérieurs (stores intérieurs), de l'orientation du vitrage, de la masse moyenne des matériaux (lourde,moyenne,légère) et de l'heure solaire. Voir tableaux 11 à 15. Les vitrages spéciaux donnent des apports réels inférieurs à ceux d'un vitrage ordinaire. Donc pour le cas de ces vitrages, il est nécessaire de corriger les apports par un facteur solaire F. Les apports réels du vitrage simple seront multipliés par le facteur solaire du vitrage pour obtenir les apports du vitrage spécial. Les facteurs solaires de vitrages spéciaux sont indiqués dans les tableaux 16, 17 et 18. Il existe aussi des facteurs solaires pour corriger ces apports pour les vitrages protégés. Ces facteurs dépendent du type de vitrage et du type de protection . Les facteurs solaires sont indiqués dans les tableaux 19, 20 et 21 pour des types de vitre et de protection.

3)Infiltrations d'air extérieur :

L'air extérieur humide provoque par infiltration à l'intérieur des locaux climatisés des variations d'enthalpie et d'humidité.

Les apports ou les pertes d'enthalpie et d'humidité sont donnés par les relations :

$$Q = q_{max}v (h_e - h_i)$$

$$M = q_{max}v (r_e - r_i)$$

avec

Q : apport ou perte de chaleur dans le local climatisé[W]

 $q_{max/V}$: débit massique d'air sec d'infiltration directement introduit dans le local climatisé sans être traité en $\lceil kg/s \rceil$

he, hi: enthalpie spécifique de l'air extérieur ou intérieur en kJ/kgas

M : apport ou perte d'humidité dans le local climatisé [kg/s]

re, ri: teneur en humidité de l'air extérieur ou intérieur [kg/kgas]

Les valeurs h_e, h_i, r_e et r_i sont lues sur le diagramme de l'air humide après connaissance de $\theta_i, \phi_i, \theta_e, \phi_e$

avec:

 $\boldsymbol{\theta}_i$, $\boldsymbol{\theta}_e$ températures intérieure et extérieure

ϕ , ϕ_e humidités relatives intérieure et extérieure

lci si les conditions intérieures $(\theta_i \text{ et } \phi_i)$ sont constantes, ce n'est pas le cas des conditions extérieures (θ_e, ϕ_e) qui varient. Cependant, il est admis avec une très bonne appréciation la constance de la teneur en humidité de l'air extérieur (ϕ_e) . Par contre, il est nécessaire de tenir compte de la variation de la température sèche extérieure (θe) .

La valeur de qmaxv dépend :

- de l'étanchéité à l'air des menuiseries (fenêtres, portes etc....)
- de la différence entre la pression à l'extérieur et la pression à l'intérieur des locaux climatisés.

Si le local est en surpression, c'est-à-dire si le débit d'air soufflé est supérieur au débit d'air extrait, il n'y aura pas d'infiltrations, mais une certaine quantité d'air est perdue, pas d'apport ou perte calorifique dans le local climatisé.

Si le local est en légère dépression, il en résultera des infiltrations d'air qu'il est difficile d'apprécier et de calculer précisément.

On a donc avantage à faire régner une certaine surpression dans les locaux climatisés.

Si la pression relative du local est nulle, c'est-à-dire si le débit de soufflage est égal au débit d'extraction, on calculera les infiltrations en adoptant les valeurs suivantes:

Nombre de Parois extérieurs	débit massique d'infiltration
ayant des fenêtres ou des portes	kg/h.m3 du local
1	1,1
2	1,8
3	2,2
4	2,5

3- Conditions intérieures

Les charges dues à l'environnement intérieur sont essentiellement constituées par les dégagements ou gains de chaleur et d'humidité à l'intérieur même des locaux climatisés. Leur importance dépend de l'utilisation à laquelle les locaux sont destinés. Ici, nous considérerons que ces dégagements sont continus, c'est-à-dire qu'ils sont constants pendant la période d'occupation des locaux climatisés. Toutefois, il est assez rare que ces gains intérieurs soient simultanés ou atteignent au même instant leur maximum. Pour obtenir une estimation valable de ces apports et limiter la puissance maximale de l'installation à une valeur économique, nous serons amener à appliquer des coefficients de simultanéité à certains des gains intérieurs.

a) Apports dus aux occupants

L'homme peut être assimilé à un "générateur thermique" dont l'énergie est produite par son activité physique et par la combustion lente des aliments. Il est doué de remarquables propriétés de régulation thermique puisque sa température reste toujours voisine de 37°C lorsqu'il est en bonne santé que ce soit au Sahara par 50°C ou en Sibérie à -60°C. Ces possibilités d'adaptation à des températures aussi différentes proviennent d'une part d'une véritable autorégulation et d'autre part de l'expérience acquise par l'homme de l'usage des vêtements contre le froid.

Ainsi, l'homme étant un générateur thermique, et sa température restant constante, les calories qu'il produit dans l'unité de temps sont donc intégralement éliminées pendant la même unité, aux déphasages près; déphasages permis par les effets d'inertie de la couche superficielle du corps ou des vêtements.

L'on conçoit donc que l'activité de l'individu soit intimement liée à la possibilité qui lui est donnée d'éliminer les calories dues à cette activité : il exercera cette dernière d'autant plus facilement que l'équilibre entre production et élimination

entraînera le déplacement le plus faible de l'équilibre biologique interne. Ceci nous amène à la notion de confort, qui est lié à la facilité avec laquelle l'individu peut se concentrer sur son occupation du moment.

L'évacuation de la chaleur se fait de façon continue sous forme de chaleur sensible et de chaleur latente et suivant les quatre types d'échanges : conduction, conversion, rayonnement et évaporation. Voir Tableau 22.

Les données de ce tableau sont calculées pour un homme adulte pesant 65 kg en bonne santé et pour un séjour supérieur à 3 heures dans le local climatisé considéré. Lorsque l'occupation est exclusivement féminine, il faut diminuer les chiffres de 20 %. S'il s'agit d'enfants, il faut réduire de 20 % à 40 % suivant leur âge. Si la proportion d'hommes, de femmes et d'enfants n'est pas connue, on diminuera forfaitairement les chiffres de 10 %.

b) Apports dus aux machines électriques

Les machines électriques que l'on peut rencontrer dans les locaux climatisés sont très diverses. En raison de leur fonctionnement à l'intérieur même du local climatisé, elles émettent toutes une certaine quantité de chaleur dans l'ambiance. Les machines modifiant l'humidité ne sont pas considérées ici.

-Machines de bureau

Une machine électrique utilisée dans un local dégage intégralement l'équivalent calorifique de la puissance électrique moyenne absorbée.

Ainsi, une machine électrique absorbant pour son fonctionnement une puissance de 1 kw dégage en une heure d'utilisation 1 kwh.

-Moteurs électriques

Les moteurs électriques entraînant des machines tournantes sont une source importante d'émission de chaleur du fait de la transformation d'une partie plus ou moins grande de l'énergie électrique absorbée en énergie calorifique.

Un moteur électrique est caractérisé par une puissance effective nominale We et un rendement η avec $\eta = \frac{We}{Wa}$

Wa est la puissance absorbée

Quatre cas d'installation sont à noter pour le calcul de l'émission de chaleur:

*le moteur et la machine entraînée sont dans le même local climatisé; dans ce cas, Q=Wa

seul le moteur est dans le local climatisé, Q=Wa(1-η)=Wa-We

*seule la machine est dans le local climatisé, dans ce cas la chaleur transmise au local dépend du type de machine:

+ pour les pompes et ventilateurs, $Q=We-\Delta p^*qv$, m avec qv, m: débit volumique moyen en $m^3 ls$

Δp:pression du ventilateur ou hauteur manométrique de la pompe en pa

+ pour les autres types de machines, Q=We

*pour les motopompes ou moto ventilateurs dans un même local climatisé, $Q = \frac{We}{n} - \Delta p * qv, m$

c) Apports dus à l'éclairage

Il est nécessaire, pour une bonne évaluation des charges d'un local, de rechercher les apports dus à l'éclairage. En effet, ces apports sont quelquefois très importants qu'il faut même envisager le refroidissement des luminaires. Ces derniers sont soit à incandescence soit à fluorescence.

La chaleur est dégagée par l'éclairage:

-par convection avec l'air ambiant

-par rayonnement absorbé par les parois et les matériaux environnants.

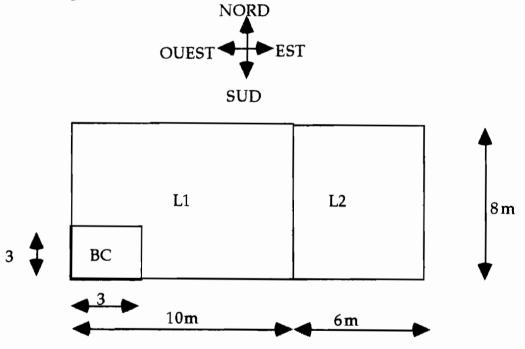
Ce dégagement dépend essentiellement du type d'ampoule ou de luminaire utilisé.

Les apports réels s'évaluent comme suit:

apports réels=M*Wa

où:

Wa est la puissance électrique réellement installée pour l'éclairage


M est un coefficient de correction sans dimension qui tient compte des facteurs suivants:

- -le type d'éclairage (fluorescent ou incandescent)
- -le temps écoulé après l'allumage de l'éclairage en heures
- -la masse moyenne des parois (lourde, moyenne ou légère)
- -la durée de l'éclairage en heures
- -la durée de fonctionnement de l'installation de climatisation en heures.

Les valeurs de coefficient sont données en annexe.

4) Exemple d'évaluation

Le bâtiment étudié est schématisé ci-dessous; il comprend trois(3) pièces où il faut faire régner les conditions intérieures données.

-Conditions intérieures:

Température=22°C et humidité relative=50%

Ces conditions donnent l'enthalpie et l'humidité absolue suivantes

hi=42,64 kJ/kgas et ri=0,0083 kg/kgas

-Conditions extérieures:

Nous estimons ces conditions pour la latitude de 15°NORD

Température=30°C et humidité relative=50%

Ce qui nous donne l'enthalpie et l'humidité absolue suivantes he=65 kJ/kgas et re=0,0133 kg/kgas

-Conditions climatiques

Le climat est moyennement brumeux et l'altitude est nulle.

-Fonctionnement de l'installation de climatisation 12 heures

-Murs

en briques (common brick) épaisseur de 101,6 mm, masse de 439 kg/ ${
m m}^2$ coloration claire,

hauteur de 3 m

-Toits

En terrasse sans plafond (Roof terrace system) masse de 366 kg/m²

-Vitrages

En verre absorbant d'épaisseur 5,5 mm

L1 dispose de 4 m² de vitrage orienté NORD, L2 de 2 m² orienté EST et de 2 m² orienté NORD et le bureau du chef de 1 m² orienté OUEST.

Tous les vitrages sont protégés intérieurement par des stores vénitiens claires sauf ceux qui sont orientés NORD. La hauteur de vitrages est de 1m. Ils disposent tous d'un châssis métallique.

-Occupants

Il est prévu un homme dans le bureau du chef, 20 personnes(hommes et femmes) dans L1 et 12 personnes(hommes et femmes) dans L2. Ces personnes y effectuent un travail modéré en position assise.

-Éclairage

Les lampes sont fluorescentes et non encastrées. Les puissances installées sont de 360 watts dans L1, de 240 watts dans L2 et de 80 watts dans le bureau. Ces lampes sont allumées à 8 heures et éteintes à 18 heures.

-Machines électriques

Dans L1 et dans le bureau est installé un ordinateur avec onduleur de 250 watts.

-Infiltrations

Les débits d'infiltration d'air extérieur estimés sont de 0,1065 kgas/s pour L1, de 0,072 kgas/s pour L2 et de 0,00825 kgas/s pour le bureau.

-Résultats

Les résultats sont détaillés dans la page suivante. Les maxima sont obtenus pour une journée du mois de JUIN .

La charge globale maximale est obtenue à 17 heures et a pour valeur: enthalpie maximale=11112 watts et humidité maximale=6249 g/h.

D / I		1								
Résultat	s exemp	ne:								
*** ENTHA	ALPIE (w)	***								
HS	`8	9	10	11	12	13	14	15	16	17
MOIS										
Juin	12755	13511	14212	12609	14765	14094	14467	16429	15046	17112
Ju/Mai	12514	13294	14028	12434	14612	13916	14283	16214	14803	16845
Aou/Av	12104	12998	13784	12203	14383	13683	14033	15915	14393	16406
Sep/Mar	12126	13055	13849	12269	14453	13750	14098	15972	14415	16340
Oct/Fev	12124	13074	1387 5	12311	14498	13794	14128	15995	14409	16308
Nov/Jan	12004	12963	13787	12234	14426	13719	14047	15891	14298	16180
Dec	11915	12888	13701	121 62	14358	13649	13964	15817	14209	16076
*** HUMIC	OITE (g/h)	***								
HS	8	9	10	11	12	13	14	15	16	17
MOIS										
Juin	6249	6249	6249	6249	6249	6249	6249	6249	6249	6249
Ju/Mai	6249	6249	6249	6249	6249	6249	6249	6249	6249	6249
Aou/Av	6249	6249	6249	6249	6249	6249	6249	6249	6249	6249
Sep/Mar	6249	6249	6249	6249	6249	6249	6249	6249	6249	6249
Oct/Fev	6249	6249	6249	6249	6249	6249	6249	6249	6249	6249
Nov/Jan	6249	6249	6249	6249	6249	6249	6249	6249	6249	6249

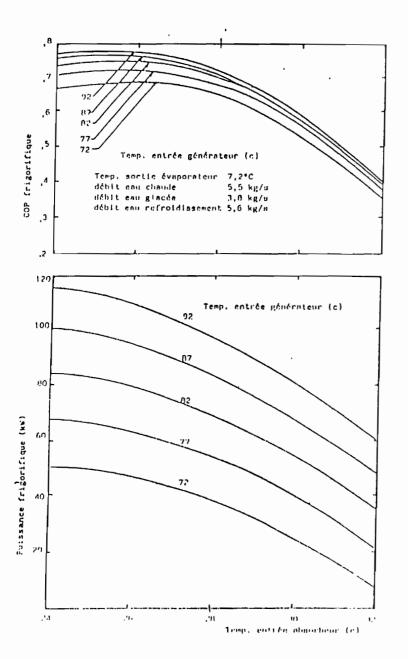
9

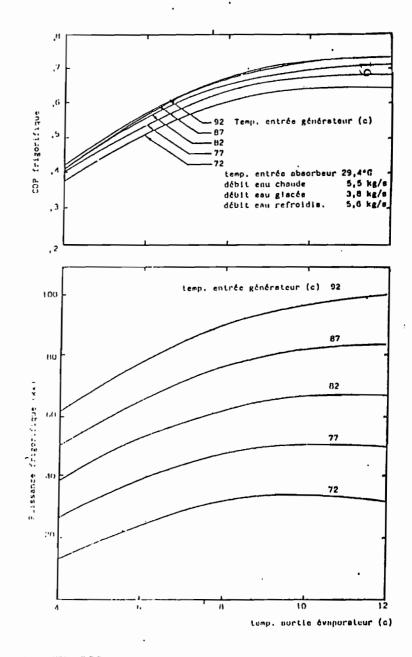
Dec 6249

CONCLUSIONS ET PERSPECTIVES DE TRAVAIL:

L'application des lois de transfert thermique et de la thermodynamique au cycle de la machine a permis de réaliser un modèle.

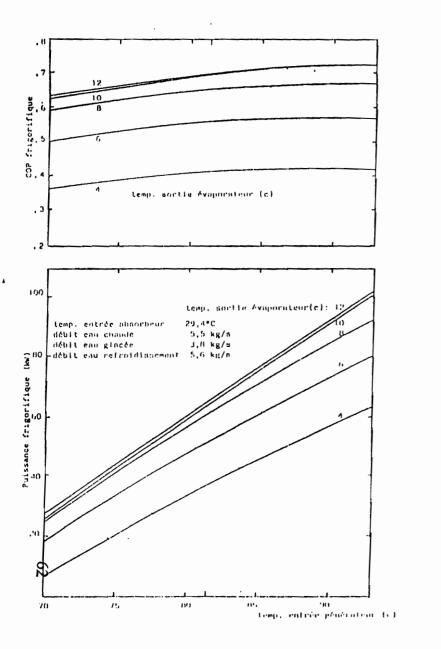
Celui-çi est un outil pour aider à la conception des éléments de la machine. Une extension du modèle à la simulation peut aider à la recherche des performances thermodynamiques d' une machine donnée dans des conditions de contraintes spécifiées (paramètres extérieurs).


L'analyse des différentes sollicitations thermiques complétée par une étude documentaire notamment celle des notes de cours de climatisation sur l'évaluation des charges a permis une automatisation du calcul des charges thermiques d'un bâtiment donné.


Cependant, ce travail doit être complété. Les axes de développement de ce travail seront les suivants:

- -Ce travail ne prend en compte que l'aspect thermodynamique, il est nécessaire d'étudier les machines et de préciser l'influence de leur design (la géométrie et l'efficacité des échangeurs).
- -Le modèle étudié devra aussi être intégré dans un système de climatisation pour déterminer le taux de couverture des besoins en froid et le système de régulation requis.
- -Après toutes ces études, il serait aussi intéressant d'effectuer des mesures sur site pour valider les études théoriques.

ANNEXES


MACHINE A ABSORPTION

好 法

Fig. 18 - Performances de Finnité ARKLA WEB 300

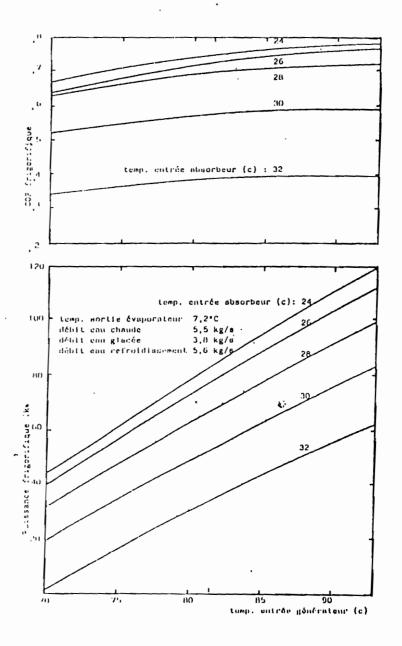


Fig. 19: Performances de l'unité ARKLA WFB 300

EVALUATION DES CHARGES

									4				١																		
	Table	Co	oling	Los	ad T	Tem	ipe	ralı	ıre	Dif	ſere	nce	ès f	or (Cal	cul	atir	ıg C	00	ling	L	ad	fro	m l	Flat	Re	oof	s			
	1	_	K.				4	46	ev	,	e	~	۰(C	,	þ	5 U	ĸ	Q	,د	. t	٥	1	Łs				Hour of			j
Rnai No		Mass, cg/m²	Kyslue. W/ m ¹ .*C		00200	0.300	0400	0500	0600					100	1200	_		15001	600 1	700 1	8 0 0 1	900 2	000 2	1002	2002	3002		Maxi- mum	Mint- mum CLTD	es o m	1783
-	Steel sheet with 25.4-mm	34	1,209	0	<u> </u>	-1		-3	-2		(hou							43	10	33	25	17	10	7				14	-1		47
2	(or \$0.8-mm) insulation 25.4-mm wood with 25.4-mm insulation	(39)	(0.704) 0.965	3	2	0	-1	-2	-2	-1	2		15	22				41	41	39		29		15	11	ŧ	5	16	-2	41	43
3	101,6-mm 1.w concrete 50.8-mm h.w. concrete with 25.4-mm (or 50 8-mn) insulation	R8 142	1.209 1.170 (0.691)	5	3 5	1	0	-1 0	-2 -1	-2 0	2	5	11	18	25 23			39 36	40 37	40 37	37 34	32 30		19 20	14	10	7	16 16	-2 -1	40 37	42 38
	25,4-mm wood with 50.8 mm insulation	44	0 610	2	n	-2	- 3	-4	-4	-4	-2	,	9	15	22	27	32	35	36	35	32	27	20	14	10	6	3	16	-4	36	40
	152,4-mm 1.w. concrete	117	0.897	12	10	_7		3	2_	_1_	0	2	_4_	_ 8 _	13	18	24	29	33	35	36	35	32	26	24	19	16	18		36	
	63.5-mm wood with 25.4-mm	63		16	13	!!	9	7	6	4	3	4	5	8					27		31				25		19	19	3	31	u
	203 2-mm L.w concrete	151		20	17	!4	.12	-10	8	6	-5		- 4			_!!		18	22_	25	28	30	30	29	27	25	22	20		30	26
	101.6-min h.w. concrete with 25.4-mm (or 50.8-mm) insulation	254 (254)	751.1 (188.0)	14	12	10	8	7	,	1	4	6	ģ	11	15	18	22	25	28	29	30	29	27	21	21	19	16	18	4	30	16
10	63.5-mm wood with 50 E-nim insulation	63	0.525	18	15	13	11		, ,	- 6 	5	5	5	7	10	13	17	21	24	27	28	29	29	27	25	23	20	15	5	*4	μ
12	Roof terrace system 152,4-mm h.w. concrete with 25,4-mm (or 50.8-mm) insulation	366 366 (366)	0.6/12 (1.090) (0.664)		17 16		14	11	11	9 9	8	7 8	8	8 10	10 12	12	15 17	18 20	20 22	22 24		25 25		25 24	24 22		21 19	20 19	7	26 25	19 17
	101.6 mm wood with 25 4- mm (or 50,8-mm) insulation	R3 (85)	0.602	21	20	18	17	!!	14	13	11	10	9	ç	9	10	12	14	16	18	20	22	23	24	24	21	22	22	9	24	15
											With	Susp	ende	d Ce	illne			- 		7.	·		. (-							
1	Steel Sheet with 25.4-mm	44	0.761	- -		- l	-2	-3	3	ถ				28	_	40	43	43	41	37			15	10	7		3	15	-3	43	4
2	(or 50.8-mm) insulation 25.4-mm wood with 25.4 mm insulation	(49) 49	(0.522) 0.653	11	8	6	5	3	2	ı	2	4	7	12	17	22	27	31	33	35	34	32	28	24	20	17	14	17	ı	35	и
3	101.6-mm 1.w. concrete 50.8-min h.w. concrete with 25.4-mm insulation	97 146	0.744		8	6	4	10	i R	0	0	2 g	6	10 11	16		27		34 24	36 25	36 26	34 26	30 25	26 23	21 21		13	17	0	36 26	¥ 11
5	25.4-mm wood with 50.8-mm insulation	49	0 471	14	11	9	7	5	4	3	3	4	6	10	14	18	23	27	30	31	32	31	29	26	22	19	16	18	3	32	×
6	152.4-mm 1.w. concrete	127	0.619	18	15	13	П	ς	7	6	4	4	4	6	9	12	16	20	24	27	29	30	30	28	26	23	20	26	4	30	×,
1	63.5-mm wood with 25.4 mm insulation	73	0 545	19	18	16	14	13	12	10	9	8	*	9	10		14	17	19	21	23	24	25	24	23	22	21	20	8	25	17
8_	203.2-mm l.w. concrete	161	0.528		20	1.5	-16	_15	.13	!_	10	9		8	8	<u>9</u>		14	16	19		23	25	25	25	24	23	26	. 8	25	17
9	101.6 mm h w concrete with 25.4-mm (or \$0.8 mm) insulation	259 (264)	0 117 (0 511)		16	15	14	11	11	12	П	11	{1	12	O	15	16	18	19	20	21	21	21	21	20	19	18	19	п	21	10
10	63.5-mm wood with 50 8-mm insulation	73	0 109	19	18	17	16	14	13	12	11	10	10	10	11	12	14	16	18	19	21	22	23	23	22	22	21	21	10	23	B
11	Roof terrace system 152.4-mm h.w. concrete with 25.4-mm (or 50.8-mm) insulation	376 376 (376)	0.466 0.710 0.499	-	16	16 15	15					13 12						15 16	16 17						18	18	18		12	19 19	1 3
13	101.6-mm wood with 25.4- mm (or 50.8-mm) insulation	93 (97)	0.465 (0.363		19	19	18	17	16	15	14	14	13	12	12	! 12	12	13	14	15	16	18	19	20	20	20	20	23	12	20	15

		Tab	le	C	ooli	ng I	_02d	Ter	npe	ratu	re D												om	Sur	ıli <u>t</u> W	alls_		
		2								۸e	5	oler T	ime, b	1		to.									H of Maxi- mum	Mini- mum	Marl- mum	Diller
North Latitude Wall Facing N NE E SE S SW W	# 14 13 11 14	R 11 13 13 11 14	8 10 13 13 11 14	7 10 13 12 11 14	7 10 12 12 10 13	7 9 12 11 10 13	7 9 11 11 9 12	6 9 11 10 9 12	6 8 10 10 9 11	6 8 10 10 8 11	6 8 10 10 8	11 10 8 10	6 9 11 10 8 10 10	6 9 12 11 8 9	6 9 12 11 8 9	6 10 13 12 8 10 10	6 10 13 12 9 10	6 10 13 13 9 10 11 8	7 11 14 13 10 11	7 11 14 13 10 12 12	7 11 14 13 11 13	7 11 14 13 11 13	8 11 14 13 11 14 14	8 (1 14 13 11 14 15	2 22 22 22 22 23 24 1	6 & 10 IO & 9 IO 8	8 11 14 13 11 14 15 12	CLTD
NW NE E SE S W NW	8 11 13 13 12 15 16	8 10 13 12 11 15 16	8 10 12 12 11 14 15	7 9 11 10 13 14	7 9 10 10 9 13 14	6 8 10 10 9 12 13	6 7 9 8 11 12	6 7 8 8 7 10 11	5 7 8 8 7 9	5 7 9 8 6 9	9 5 8 9 8 6 8	8 5 8 10 9 6 8 7	8 Wall 5 9 12 10 6 7 8	8 5 9 13 11 7 7 8 6	5 10 13 12 8 8 8	6 10 14 13 9 9 8 7	6 11 14 14 10 10	7 11 15 14 11 11	7 11 15 14 11 13 12	8 12 15 14 12 14 14	8 12 15 14 12 15 15 15	8 12 15 14 12 15 16 13	8 21 14 14 12 16 16 16	8 11 14 14 12 16 17 13	24 21 20 21 23 24 24 24	5 7 8 8 6 7 8	8 12 15 14 12 16 17	3 5 7 6 6 9 9 7
N NE E SE S S SW W	9 10 13 13 12 16 17	R 10 12 12 11 15 16	7 9 11 11 10 14 15	7 8 10 10 9 12 14	6 7 9 8 11 12	5 6 8 8 7 10 11	5 6 7 7 6 9	4 6 6 8 9 7	4 6 7 5 7 8 6	4 7 9 7 5 7 7 6	4 8 11 9 5 6 7	4 10 13 10 5 6 7	5 10 14 12 6 6 7 6	5 11 15 14 8 7 7 6	6 12 16 15 9 8 8	16 16 16 11 10 9	7 12 17 16 12 12	8 13 17 16 13 14 13	9 13 16 16 14 16 16	9 13 16 16 14 18 18	9 13 16 16 14 18 19	10 12 15 15 14 18 20 15	9 12 14 14 13 18 19	9 11 13 13 12 17 18	22 20 18 19 20 22 22 22	4 6 7 6 3 6 7 5	10 13 17 16 14 18 20 15	4 7 10 10 9 12 13 10 10 10 10 10 10 10 10 10 10 10 10 10
N NE E SE S S W NW	8 9 11 11 11 15 17	7 8 10 10 10 10 14 15	7 7 8 9 8 12 13	6 7 7 7 10 12	5 6 6 6 9 10 8	4 5 5 5 5 8 9	3 4 5 5 4 6 7	3 4 5 5 5 4 5 6 5	3 6 7 5 3 5 5	3 8 10 7 3 4 5	4 10 13 10 4 4 5	11 15 12 5 5 5	D Wa! 5 12 17 14 7 5 6 5	13 18 16 9 7 6	6 13 18 17 11 9 8	7 13 18 18 13 12 10 8	8 14 18 18 15 15 13	9 14 18 18 16 18 17	10 14 17 17 16 20 20	11 13 17 17 16 21 22	11 13 16 16 15 21 23	10 12 15 15 14 20 22	10 11 13 14 13 19 21	9 10 12 12 12 17 19	21 19 16 17 19 21 21	3 4 5 5 3 4 5	11 14 18 18 16 21 23 18	THE THE THE SERVICE
N NE E SE S S S W NW	7 7 8 8 8 12 14	6 6 7 7 7 10 12 9	5 5 6 6 8	4 4 5 5 7 8 6	3 3 4 4 6 6	2 2 3 3 3 4 5 4	2 3 3 3 2 4 4 3	2 5 6 4 2 3 3 3 3	3 8 10 7 2 3 3	3 11 15 10 3 3 4	4 13 18 14 5 4	5 14 20 17 7 5 5	E Wat 6 14 2! 19 10 7 6 6	7 14 21 20 14 10 8 7	8 14 20 20 16 14 11	10 14 19 20 18 18 15	10 15 18 19 19 21 20	11 14 15 18 18 24 24	12 14 17 17 17 25 27	12 13 15 16 16 24 27 21	11 12 14 14 14 22 25 20	10 11 12 13 13 19 22 18	9 9 11 11 17 19	8 9 10 16 14	15 17 19 20	2 2 3 3 2 3 3 3	12 15 21 20 19 25 27 21	H K D D D R D B JACASHA BOOK BUILD DA
N NE E SE S SW W		4 4 4 6 7 6	3 3 3 5 5 6 4	2 2 2 2 2 4 4 3	3	1 1 1 2 2 2 2	1 3 4 2 1 1 2	2 8 9 6 1 1 2	3 13 16 10 2 2 2 2	4 16 21 15 4 3 3	5 17 24 20 7 4	6 16 25 23 11 6	10 8	11s 9 15 22 23 19 14		20 22 24 22				13 12 13 14 15 25 30 24	11 10 11 12 12 20 24 20		7 7 8 8 8 13 15		11 12 13 16 18 19	1 1 1 1 1 1 2	13 17 25 24 22 30 31 26	A H B B B K K II
N NE F SE S SW W NW	2 2 2 2 2 3 4 3	1 1 1 1 2 3 2	0 1 1 1 2 2 2 1	1	0 0 0 0	6 3 0 0 1	17 10 1 1	3	30 24 7 4 5	7 20 31 27 12 6 6	8 16 28 28 17	10 15 22 27 22 14 10	15 19 23 25 21 15	13 15 17 20 26 28 23	15 17 18 24 33 31	15 16 16 21 35	15 17 34 40	13 13 14 29 37	10 11 11 11 20 27	8 8 13 16	7 10 11	5 6 5 7 8	4 4 4 6		9	0 0 0 0 0 0	15 22 31 24 26 35 40	SHEWARDS HERE

							alls and Roof				
Lat.	Month	N	NNE NNW	NE NV	ENE WNW	E W	ESE WSW	SE SW	SSE SSW	s	HOR
0	Dec	-1.6	-2.7	-2.7	-2.7	-1.1	0.0	1.6	3.3	5.0	-0.5
	Jan/Nov	-1.6	-2.7	-2.2	-2.2	-0.5	0.0	1.1	2.2	3.8	-0.5
	Feb/Oct	-1.6	-1.1	-1.1	-1.1	-0.5	-0.5	0.0	-0.5	3.8	-0.0
	Mar/Sept	-1.6	0.0	0.5	-0.5	-0.5	-1.6	-1.6	-2.7	-4.4	0.0
	∧pr/∧ug May/Jul	2.7 5.5	2.2 3.8	1.6	0.0	-1.1	-2.7	-3.3	-4.4	-4.4	-1.1
	Jun	6.6	5.0	2.7 2.7	0.0	-1.6	-3.8	-4.4	-5.0	-4.4	-2.2
•				2.1	0.0	-1.6	-3.8	-5.0	-5.5	-4.4	-2.7
8	Dcc	-2.2	-3.3	-3.3	-3.3	-1.6	0.0	2.2	4.4	6.6	-2.7
	Jan/Nov	-1.6	-2.7	-3.3	-2.7	-1.1	0.0	1.6	3.3	5.5	-2.2
	Feb/Oct	-1.6	-2.2	-1.6	-1.6	-0.5	-0.5	0.5	1.1	2.2	-0.5
	Mar/Sept	-1.6	-1.1	-0.5	-0.5	-0.5	-1.1	-1.1	-1.6	-2.2	0.0
	Apr∕Aug May/Jul	1.1 3.8	1.1 2.7	1.1	0.0	-0.5	-2.2	-2.7	-3.8	-3.8	− 0.5
	Jun	5.0	3.3	2.2 2.2	0.0	-1.1	-2.7	-3.8	-5.0	-3.8	-1.1
		2.0	3.3	2.2	0.0	-1.1	-3.3	-4.4	-5.0	-3.8	-1.1
6	Dcc	-2.2	-3.3	-4.4	-4.4	-2.2	-0.5	2.2	5.0	7.2	-5.0
	Jan/Nov	-2.2	-3.3	-3.8	-3.8	-2.2	-0.5	2.2	4.4	6.6	-3.8
	Feb/Oct	-1.6	-2.7	-2.7	-2.2	-1.1	0.0	1.1	2.7	3.8	-2.2
	Mar/Sept	-1.6	-1.6	-1.1	-1.1	-0.5	-0.5	0.0	0.0	0.0	-0.5
	Apr/Aug	-0.5	0.0	-0.5	-0.5	-0.5	-1.6	-1.6	-2.7	-3.3	0.0
	May/Jul	2.2	1.6	1.6	0.0	-0.5	-2.2	-2.7	-3.8	-3.8	0.0
	Jun	3.3	2.2	2.2	0.5	-0.5	-2.2	-3.3	-4.4	-3.8	0.0
4	Dec	-2.7	-3.8	-5.0	-5.5	-3.8	-1.6	1.6	5.0	7.2	-7.2
	Jan/Nov	-2.2	-3.3	-4.4	-5.0	-3.3	-1.6	1.6	5.0	7.2	-6.1
	Feb/Oct	-2.2	-2.7	-3.3	-3.3	-1.6	-0.5	1.6	3.8	5.5	-3.1
	Mar/Scpt	-1.6	-2.2	-1.6	-1.6	-0.5	-0.5	0.5	1.1	2.2	-1.6
	Apr/Aug	-1.1	-0.5	0.0	-0.5	-0.5	-1.1	-0.5	-1.1	-1.6	0.0
	May/Jul	0.5	1.1	1,1	0.0	0.0	-1.6	-1.6	-2.7	~3.3	0.5
	Jun	1.6	1.6	1.6	0.5	0.0	-1.6	-2.2	-3.3	-3.3	0.5
12	Dec	-2.7	-3.8	-5.5	-6.1	-4.4	-2.7	1.1	5.0	6.6	-9,
	Jan/Nov	-2.7	-3.8	-5.0	-6.1	-4.4	-2.2	1.1	5.0	6.6	-: 1
	Fcb/Oct	-2.2	-3.3	-3.8	-4.4	-2.2	-1.1	2.2	4.4	6.1	-4 d
	Mar/Sept	-1.6	-2.2	-2.2	-2.2	-1.1	-0.5	1.6	2.7	3.8	-11
	Apr/Aug	-1.1	-1.1	-0.5	-1.1	0.0	~0.5	0.0	0.5	0.5	-0.5
	May/Jul	0.5	0.5	0.5	0.0	0.0	-0.5	-0.5	-1.6	-1.6	0.2
	Jun	0.5	1.1	1.1	0.5	0.0	-1.1	-1.1	-2.2	-2.2	1.1
O	Dec	-3.3	-4.4	-5.5	-7.2	-5.5	-3.8	0.0	3.8	5.5	-112
	Jan/Nov	-2.7	-3.8	-5.5	-6.6	-5.0	-3.3	0.5	4.4	6.1	-10.5
	Feb/Oct	-2.7	-3.8	-4.4	-5.0	-3.3	-1.6	1.6	4.4	6.6	-1.8
	Mar/Sept	-2.2	-2.7	-2.7	-3.3	-1.6	0.5	2.2	3.8	5.5	-U
	Apr/Aug	-1.1	-1.6	-1.1	-1.1	0.0	0.0	1.1	1.6	2.2	
	May/Jul Jun	0.0 0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.3
	2011	9.2	0.5	0.5	0.0	0.5	0.0	0.0	-0.5	-0.5	12
8	Dec	-33	-4.4	-6.1	-7.7	-7.2	-5.5	-1.6	1.1	, ,	_,,7
	Jan/Nov	-3.3	-4.4	-6.1	-7.2	-6.1	-4.4	-0.5	1 1 2.7	3.3 4.4	-1112
	Feb/Oct	-2.7	-3.8	-5.5	-6.1	-4.4	-2.7	0.5	4.4	6.1	-16.2
	Mar/Sept	-1.2	-3.3	-3. 3	-3.8	-2.2 '	-0.5	2.2	4.4	6.1	1
	Vbr/Vn8	-1.6	-1.6	-1.6	-1.6	-0.5	0.0	2.2	3.3	3.8	-1
	May/Jul	0.0	-0.5	0.0	0.0	0.5	0.5	1.6	1.6	2.2	10 E
	Jun	0.5	0.5	1.1	0.5	1.1 '	0.5	1.1	1.1	1.6	3
56	Dec	-3.8	-5.0	-6.6	-8.8	-8.8	-7.7				- 37
	Jan/Nov	-3.3	-4.4	-6.1	-8.3	-7.7	-6.6	-5.0 -2.2	-2.7	-1.6	-154
	Feb/Oct	-3.3	-4.4	-5.5	-6.6	-5.5	-3.8	-3.3 0.0	-0.5	1.1	-以書
	Mar/Sept	-2.7	-3.3	-3.8	-4.4	-2.7	-1.1	2.2	3.3	5.0	-1/E
	Apr/Aug	-1.6	-2.2	-2.2	-2.2	-0.5	0.5	2.7	4.4 3.8	6.6	7.5
	May/Jul	0.0	0.0	0.0	0.0	1.1	1.1	2.7	3.3	5. 0 3. 8	. **
	Jun	1.1	0.5	1.1	0.5	1.6	1.6	2.2	2.7	3.3	2
i 4	Dec	-3.8	-5.0							3.3	1: 12:
	Jan/Nov	-3.8	-5.0	-6.6 -6.6	-0.8	-9.4	-10.0	-8.8	-7.7	-6.6	- (1)
	Feb/Oct	-3.3	-4.4	-6.6 -6.1	-8.8 -7.7	-8.8 -7.3	-8.8	-7.2	-5.5	-4.4	- Q
	Mar/Sept	-2.7	-3.8	-5.0	-7.7 -5.5	-7.2 -1.8	-5.5 -3.3	-2.2	0.5	2.2	-//医
	Apr/Aug	-1.6	-2.2	-2.2	-3.3 -2.2	-3.8 -0.5	-2.2	1.1	3.8	6.1	一次
	May/Jul	0.5	0.0	0.5	0.0	1.6	0.5 2.2	2.7 3.3	5.0 4.4	6.1 5.5	1

1	ı													
MOIS	OUIENIVIUM		7	•	•	10	11	12	13	14	18 j	18	17	18
			142	204	212	245	252	258	252	245	232	204	142	
	NF	'n.	374	491	404	410	110	INC	רח	44	41	14	10	n
	F	0	304	462	425	292	135	44	.44	44.	41	34	18	0
ĺ	SE		116	131	85	46	44	AA	44	44	41	34	19	0
אוטנ	s	n	19	34	41	44	44	44	44	4,4	41	34	19	0
	\$0	n	19	34	41	44	. 44	44	44	46	85	131	116	0
ſ	· n	ัก	19	74	41	44	44	44	135	292	475	462	364	0
ļ	МО	0	19	34	41	44	63	166	710	418	484	560	374	0
	Horizontala	٥.	87	273	462	801	602	710	601	601	462	273	-67	0
}	N	U	116	160	101	204	200	210	200	204	191	169	116	0
	WE	n	371	460	471	30(1	210	135	5(1	44	41	34	10	0
	F .		380	476	437	305	135	- 44		44 -	·	34	- <u>-</u> -	0
JUILLET	S.F.	(1)	144	164	113	56	44	44	44	44	41	34	10	0
ET MAI	5 50	n n	16	34	41	44	44	44	44	4.4 56	113	184	10	0 0
mai			10			· · ·	44	44	-	702	437	478	380	0
	0 ON	n n	10	34	41 41	44	61	135	135	100	471	460	371	0
	Horizontale	e	āθ	285	474	612	100	732	701	612	474	305	٥١	ó
!	N	<u>r</u>	53	n 7	97	103	107	107	107	103	97		53	0
	NF	n	746	443	AIR	320	191	74	44	44	41	3,	ıç	()
	Ε	ſ	405	513	465	324	145	44	44	44	41	77	10	0
TUOA	SE	n -	210	246	2(14	1[10	AR	4.5	44	64	4'	37	ıċ	0
Εī	\$	'n	10	3;	41	AA	44	44	44	44	41	37	10	Ú
JIRVA	50		16	31		44	. 44	.44	46	106	204	248	210	_0
	n	0	1 Ç	3.7	41	44	4.4	44	240	324	4EC	513	405	0
	но	n	10	3.7	41	44	44	"	101	770	AIR	443	346	(i
	Horizontale			305	471	647	735	770	735	F47	471	305	97	0
	N	Ŋ	ıċ	37	41	44	41	44	44	44	41	37	16	e
	NE	υ U	Söt	371	317	213	97	44	4.6	44	41	37	16	0
	E	<u>C</u>	421	524	474	336	147		44	. 44	41	37	16	0
SEPTEMBRE	\$E	0	50B	371	317	213	97	44	44	44	41	37	16	0
ET MANS	s so	0 0	10	37 37	41	44	11	44	07	212	317	37	1° 298	0
minis						. 44								
	0	C	10	7.7	41	44	44	44	147	336	474	524	421	n
	NO Horizontala	η Ο	100 1ë	37	513	660	754	786	97 754	71.7 660	317 513	371	100 Sóu	່ດ . 0
		0	10					44		44				
	N NF	n	210	248	204	100	46	44	44	44	41	11 11	10	() ()
	ε	(1	405	513	465	324	143	11	44	44	41	37	19	(1
OCTOBRE	SE SE		746	443	418	320	191	75	44	44	41	37		
ET	s	'n	53	87	97	103	107	107	101	a;	P.7	P. 7	51	ò
EEAUIEB	50	Ü	۱ć	37	41	44	46	75	191	320	418	443	14è	0
	0	_ U	10	37	41	- 44	44	14	144	324	465	£13	405	0
	พด	e	١ċ	ر ڌ	41	41	44	44	16	ıUö	204	24F	240	0
	Herizontala	c	07	305	471	647	735	770	735	64	471	30!	ė-	()
	N		ıċ	34	41	44	144	1 44	11	44	11	34	10	0
	NE	ດ	146	184	113	¿ŀ.	. 44	4.1	44	44	۸٠	34	1ċ	ŋ
	£	ů	500	478	417	302	135	4.4	47	44	41	34	10.	0
HOVEMBRE	SE	n	771	180	471	30(1	270	וזרו	50	11	41	340	16	t)
E1	S	0	116	160	101	204	SUB	210	50.6	SÚN	191	160	115	0
HEIVHAL	<u>\$0</u>	0.	10	34		_ 44	50	135	270	360	471	460	371	0
	0	0	10	34	41	44	4.4	44	135	302	437	478	380	6
	NO Notice tale	0	10	205	41	613	701	777	701	55	113	164	144	C
	Horizontale	0	 ā0	205	174	612	701	732	701	612	474	785	ō()	0
	N N	0	19	34	41	44	144	44	44	44	41	34	10	0
	NE	, ,	116	131	85	16	1 125	44	44	44	41	34	10	0
	· · · · · · · · · · · · · · · · · ·	0	354	482	125	292	135	-		44		34		0
DECLUSE	SE.	0	374	191	484	AIR	5.06	166	63	745	1 122	34	10	0
DECEMBLE	₹ 80	0	147	504	232	245	257	258	252	418	184	204	147	l u
			16	- 34	┨—		- 63	166		-		491	374	0
	0	0	19	34	41	44	44	44	135	565	425	462	364	0
	NO Horizoniale	0	19	212	463	64	603	710	602	46	100	131	116	0
	florizontale	<u>_</u>	87	213	162	601	682	710	685	601	Ar: ·	273	B7	0_

TABLEAU 4 - APPORTS EFFECTIFS D'UN VITRAGE ORDINAIRE ET NON PROTEGE [W/m²]

0° Latitude Nord

-		ł						HFU	IF ROL	AIRE .					$\overline{}$
١	MOIS	ORIENTATION	6	1 7	۱.	! .	١		ι	ı	ı	ı	ı	1	.
I		::	٠	l	l		10	11	12	13	14	15	16	17	18 .
1		Ñ NE	59 173	138	157	142	138	135	128	135	าาก่	142	167	130	Ā T
1		E	169	421	460 467	440	333	129	44	44	14	41	34	24	6
1		SE	56	153	173	135	78	44	44	44	-14	1-21	34	.24	6 -
	NIN	S	в	24	34	41	44	44	44	144	44	41	34	24	6
1		80 -	6	24	24	41	44	44	44	44	78	1.35	173	153	56
ı		0 NO	6 6	24	24	41	44	44	44	129	307	437	487	421	169
l		Horizontala	12	138	336	522	645	732	87 764	204 732	333 645	440 522	480	412	173
1		N	15	107	122	109	103	97	94	97	103	109	122	138	12
1		HE	131	399	465	418	342	175	68	44	44	41	34	107	15
ì	JUILLET	E	157	425	498	447	307	135	44	44	44	41	34	22	2
	ET	8 E	81	179	208 34	175	100	44	44	44	44	41	34	22	2
	MAI	SC	2	22	34	41	44	44	44	44	100	175	34 208	179	2
1		C	2	22	34	41	44	14	41	135	307	447	496	122	157
1		NG Harlzentale	2 9	52	34	41	44	44	68	175	342	418	465	399	131
-		N		131	336	522	€60	742	776	742	650	522	336	131	g.
		HE	2 53	46 355	50 408	46 349	46 252	102	44	44	46	46	50	46	2
1		E	78	434	£13	469	327	107	44	44	44	41	34	22	2
	TUOA	13	56	248	286	267	186	85	44	44	44	41	34	22.	l
1	ET AVRIL	\$ \$G	2	22	34	41	44	44	44	44	44	41	34	22.	2 56
1		<u></u>	2	55	34	41	-44		44	8.5	188	267	295	248	56
1		но	2	22	34	41	44	44	44	144	327	469	513	434	78
1		Horizontale	6	119	329	524	669	761	786	107 761	252 669	349 524	408 329	355	53
l		н	2	19	34	41		44	44	44	44	41			<u> </u>
1		NE E	2	280	324	252	142	53	44	44	44	41	34	19	2
	SEPTEMBRE		2	408	616	474	333	147	41	44	44	41	34	19	2
1	ET	S E S	2	305	389	383 59	295	175	66	44	44	41	34	19	2
l	MARS	\$0	2	19	34	41	75 44	85 44	66 66	85 175	75 295	59 383	41 389	19 305	2
1		0	2	19	34	41	44		44	147	333	474	515		2
		NO Hadasalala	2	19	34	41	44	44	44	53	142	252	324	408 280	2
·-		Horizontale	2	97	305	502	651	739	776	139	651	502	305	97	2
1		N NE	0	15 182	31 208	138	44 87	44	44	44	11	41	31	15	0
1		E	ő	371	467	456	314	125	44	44	44	41	31	15	0
1	OCTOBRE	\$E	0	324	462	468	386	254	144	56	44	41	31	15	0
1	ET FEVRIER	\$ \$0	0	56	125	173	204	223	230	223	204	173	125	15 56	0
1				-15	31	41		56	144	254	386	489	462	324	0
1		0 NO	0	15	31	41	44	44	4.4	125	314	456	487	371	0
		Horizontale	ő	€8	267	437	607	691	723	691	87 607	138	208 267	182 68	0
		H	0	12	56	37.	41	44	44	44	41	37	28	12	0
		NE E	0	85	116	53	41	44	44	44	41	37	28	12	0
	NOVEMBRE			311	446	415	565	122	44	44	41	37	28	12	0
	Eī	SE S	0	311	460 204	806 285	459 302	342	219	97	53	37	28	311	0
1	JANVIER	\$0	o	12	201	37	53	327 97	333 219	321	302 459	285 606	204 480	109	0
		0	0	12	26	37	41	44	14	122	292	415	449	311	0
1		NO Herbonists	0	12	28	37	41	44	44	41	41	53	115	85	0
		Herizontale		53	195	412	550	635	660	635	550	412	195	53	o
		NE NE	0	12	26	37	41	44	44	44	41	37	28	12	0
		E	0	46 270	87 430	53 408	41 285	131	44	44	41	37	28	12	0
		8 E	0	311	484	613	469	380	248	44	41	37	28	12	0_
1	DECEMBRE	\$	0	157	232	295	342	364	377	364	72 342	37 295	28 232	12	0
		50	0	_12	28	37	72	113	248	360	469	513	484	311	0
1		0	0	12	28	37	41	44	44	131	285	408	430	270	
		NO Herizoniate	0	12	26	37	41	44	44	44	41	53	67	46	0
٠			L	44	206	377	524	607	635	607	524	377	208	44	0

TABLEAU 5 - APPORTS EFFECTIFS D'UN VITRAGE ORDINAIRE ET NON PROTEGE [W/m²]

10° Lalllude Nord

MOIS	ORICHIATION						. KEUN	i E SOL	AIRE		_			
		٨	'	٩		10	11	12	13	14	15	10	17	14
	N	NA.	120	104	79	50	53	46	Ši	59	īñ	104	129	Ā7
	NE E	254	484	457 803	701 449	701	117	10	44	44	44	٦/	วา	1
	SE	87	195	230	208	138		11	41	44	44	47	27	٦.
ипп	8	9	29	37	44	44	i i i	44	41	44	AA	31	29	a
	90	10	20	37	44	44	44	41	ud.	130	200	37 230	20	Q 87
	0	9	20	37	44	44	111	111	120	3(1)2	449	503	465	255
	NO	9	20	37	44	44	44	46	119	261	383	452	484	255
	Hortzontala	35	เภภ	380	553	R79	730	786	130	610	553	ากก	100	35
	N NE	63 223	415	17	51	48	44	41	44	46	5.3	12	9.7	6.3
	E	235	465	513	34 <u>9</u> 456	230 311	97	11	111	14	41	37	24	ō
JUILLET	SE	07	210	267	248	179	00	44		''	11	37	24	9
E1	8	۹ ا	24	31	41	44	44	44	41	44	41	17	24	יי
MAI	\$0	9	.21	37	41	44	44	11	Ort	179	248	267	219	97
	0	n	24	77	41	44	44	41	1.11	111	456	513	455	235
	NO Hotizoniala	ő	173	37	41	44	11	44	07	230	310	134	415	221
	N .	10	1173	371	550	679	754	7.29	754	677	550	371	173	9
	NE	142	349	371	41 280	157	50	11	44	4.1	41	14	31	19
	ŧ	166	447	(318)	469	333	160	44	14	44	41	34	22	fi
AOUT	SE	6U	290	355	339	307	173	63	44	44	41		55	6
ET	9	6	22	34	44	R.1	75	81	75	E.J.	44	34	55	6 6
VAUIT	50	6	. 22	34	41	. 44	.44	63	173	307	339	355	580	90
	0 NO	R	25	34	41	44	44	44	150	333	4 £0	319	447	166
	Horizoniale	15	151	34	41	44	44	14	56	157	200	371	140	142
	N		19		524	660	7.39	776	7.39	ย์งก	524	336	151	15
	NE	l n	261	273	188	44 68	44	44	11	44	41	34	1.0	0
	E	0	408	513	489	327	142	44	44	11	41	34	19	0
SEPTEMBRE	SE	0	311	427	440	311	263	120	46	44	41	34	1	0
E1	\$	n	24	eu	119	164	197	204	107	164	119,	68/	19 24	0
MANS	.so	- 0	10	34	41	44	46	159	261	377	440	427	311	0
	0	ŋ	19	34	41	41	44	14	142	327	460	513 -	408	0
	NO Horizoniais	0 0	94	34	41	44	44	44	44	Ŀυ	185	273/	261	Ö
	N	ر م		565	460	823	700	732	708	623	480	292	94	0
	NF	"	120	20 184	37	41	11	44	44	41	37	20	12	้ก
	E	0	311	462	443	314	153	11	11	41	37	20 20	12	0
OCTOBRE	SE	0	205	459	502	160	374	212	חיק	41	7,	'	12	0
ĘŢ	9	n	56	157	239	202	111	349	111	292.	239.	20 157	12 56	0
FEAULEN	\$0	0	12	28	37	41	85	232	374	460	502	457	2A5	0
	0	0	12	Śυ	37	41	4.4	-14	153	314,	147,	467	311	0
	NO Horizontale	0	15	24	37	41	41	44	44	41	90	164	138	n
-	N		56	213	300	537	615 -	854	616	537	300	213	56	_0_
	NE	0	75	81	31	41	41	41	41	41	34	24	9	0
	E	Ö	223	403	399	285	135	41	41	41	34	21	Ö	0
NOVEMBNE	SE	0	230	452	515	49R	125	205	144			24	ā	
ΕT	s	'n	R7	217	314	388	427	443	427	305	314	217	9 87	0
JVHAIEB	\$0	0	9	24	34	50	144	205	425	406	515	452	230	0
	0	n	a	24	34	37	41	A1	135	205	300 -	493	223	· ·
	NO Horizontale	n	٩	24	34	37	41	41	41	41	44	1 1 1	75	0 n
		0	15	151	317	459	541	566	541	459	317	(51	15 .	0
	HE HE	0	14	55	34	37	41	41	41	37	34	22	é	o.
	E	0	175	371	37	37 267	107	41	41	37	74	22	6	0
	SE.		188	437	524				41	37	-34	22.	6	0_
DECEMBRE	\$	0	78	232	349	500 415	450	305	10A 45Q	415	34	22	- 5	n
	80	0	6	22	34	63	188	305	421	500	140 , 524	272	7A 100	0
	0	0	6	22	34	37	41	41			-	437	186	0
	NO	n	A	22	34	37	1 41	41	107	267	380,	371	175	0
	Horizontale	1 0	12	113	289	425	506	535	506	425	209	113	44	0

TABLEAU 6 - APPORTS EFFECTIFS D'UN VITRAGE ORDINAIRE ET NON PROTEGE [WIM']

20° Latituda Nord

,							HEUR	E BOLA	MRE					
BIOM	ORIENTATION	6	7		9	10	11	12	13	14	16	16	17	18
	NE E	103 329 339	90 437 491	56 408 606	44 305 449	44 173 307	44 59 138	44	44 44 44	44	44	56 37 37	90 31 31	103 15 15
	SE	131	235	283	283	230	138	53	44	44	44	37	31	15
MIDE	8	15	31	37	44	46	59	66	59	46	44	37	31	15
ļ-	so	15	31	37	44	- 44	44	53	138	230	283	283	235 491	131
	0 NO	15	31 31	37 37	44	44	44	44	138 59	307 173	449 305	506 408	437	339 329
	Horizontale	59	191	412	566	682	754	786	754	682	566	412	191	59
	N NE	68 292	63 412	44 386	41 280	144	44	44	44	44	41	37	6 3	68 12
\ \	E	313	487	616	456	311	138	44	44	44	41	37	28	12
JUILLET	SE	131	258	314	314	261	166	68	44	44	41	37	28	12
ET MAI	\$ \$0	12	28 28	37 37	44	63	85 44	94	85 166	63 261	314	37	28 258	12
F (1)	0	12	28	37	41	44	44	44	138	311	456	515	487	314
	МО	12	28	37	41	44	44	44	50	144	260	386	412	292
	Horizontale	46	208	386	553	673	742	774	742	673	553	366	208	46
	NE N	173	28 336	34	41 206	e5	44	44	44	41	41	34	28	19 6
	<u>E</u>	208	462	519	465	320	144	44	44	41	41	34	28	6
TUOA	SE	116	307	399	408	351	258	122	46 182	147	41 85	37	28 28	6
ET AVRIL	s so	6	28	37	85 41	147	182	122	258	351	405	399	307	116
	0	6	26	37	41	41	44	44	138	311	465	518	462	208
į	NO Madagatala	6	28 147	37	41	41	708	739	708	85 629	208 506	314	339 147	173
	Hodzonlale	19	15	336	506 37	629	44	44	44	41	37	31	15	0
1	NE	0	232	263	125	46	44	44	44	41	37	31	15	
	E	0	390	496	452	324	151	44	44	41	37	31	15	0
SEPTEMBRE ET	SE S	0	307	112	188	443 258	355	210 329	78 307	41 258	188	31 56	15	0
MARS	so	0	15	31	37	41	78	210	355	443	478	412	307	o
	0	0	15	31	37	41	44	44	151	324	452	498	390	0
	NO Hodzoniale	0	15	31 254	425	563	635	666	635	563	125	283	232 78	0
	N	0	9	28	34	37	41	44	41	37	34	28	9	0
	WE	0	103	122	56	37	41	44	41	37	34	28	9	0
OCTORRE	E	0	248	425	415	295	135	289	147	37	34	28	9	0
OCTOBRE ET	S E S	0	230	179	513 289	380	427	456	437	380	289	179	56	0
FEVRIER	so	0	9	28	34	46	147	289	427	500	613	447	230	0
	0 0	0	9	28	34	37	41	44	135	295 37	415	122	103	0
	Horizontale	0	19	153	314	449	537	563	537	449	314	153	19	0
	N	0	2	19	26	34	37	37	37	34	28	19	2	0
	NE E	0		342	2E 364		109	37	37	34	28 28	19	2 2	0
NOVEMBRE	SE SE		+		506			+-	201	1 72	26	- 19	2	1 0
ET	s	0	31	213	342	430	484	600	484	430	342	213	31	0
ASIVNAL	<u>so</u>	0	+	_				-	449	800	506	399	87	- 0
	O NO	0			1					261			85	0
	Horizontale	O	_	1		1	1 -		1 -	342		1	6	o
	N	0				1 -	_		1 -	34	-		1	1 -
	NE E	0	1 -	1 -	1	1 -	1 -		1 -	1	- 1			1 -
	SE		_		_	_	-		_				_	
DECEMBRE	8	0) 0	201	355	447	500	513	500	447	355	201	0	0
	03				-	-+-		_	_					
	0			12							1	[1 -	
	Horizontale	- 1	- 1	59			1			- 1	- 1	1		1

TABLEAU 7 - APPORTS EFFECTIFS D'UN VITRAGE ORDINAIRE ET NON PROTEGE [W/m²]

30° Lalitude Nord

							HEURI	SOL	LIRE	•		-		
Í	ORIENTATION		7		•	10	"	12	13	14	15	16	17	18
	N	101	63	37	41	44	44	44	44	44	41	37	63	100
	NE	371	418	352	230	94	44	44	44	44	41	77	31	19
]	€	396	506	509	447	298	138	44	. 44	44	41_	37	.31	. 19
NIUL	SE S	160	276 31	342	348 59	311 109	138	107	138	109	41 59	37	31	19 19
JOIN	so	19	31	37	41	44	44	107	223	311	349	342	276	160
	0	10	31	37	41	44	44	44	138	298	447	509	506	396
	МО	10	31	37	41	44	44	44	4.4	94	230	352	418	371
	Harlzentele	97	258	421	563	660	730	745	730	660	563	421	258	97
	N NE	75 333	389	37 329	208	14	44	44	44	44	41	37	31	75 15
	E	371	506	515	452	307	135	44	44	44	41	37	31	15
JUILLET	SE	170	302	374	393	344	258	131	AG.	44	41	37	31	15
ET	\$	15	31	41	81	13P	197	217	10:	1,30	R1	41	31	15
MAI	S0	- 15	_31	37			46	131	25F	346	383	374	302	170
	0 0	15	31	37	41	44	44	44	135	307	452 208	515	50 6 399	371
}	Hoilzontele	75	230	366	537	636	70P	732	700	63ª	537	366	230	75
- 1	N	22	24	34	41	4.0	44	44	1 44	1	41	34	24	27
	NE	212	320	258	144	ŧυ	44	44	44	44	41	34	24	č
	- <u>E</u>	263	452	509	456	31;	142	-44			41	34	54	-0
VÜfi1	\$F 5	151	329	434	150	280	336	320	7P 305	280	150	37	24	ö
VAUI	\$0	9	24	37	41	44	78	208	335	437	459	434	329	151
t	0	ė.	24	37	41	44	44	44	142	317	456	509	162	263
	NO	ė	24	37	41	61	44	11	44	50	144	2.eb	320	213
	Horizontale		147	314	471	561	645	673	645	581	471	314	147	28
	N	0	15	2P	37	A1	41	44	41	41	37	26	15	0
	E NE	0	160 364	182	437	311	142	14	41	AL	37	2E	15	0
SEPTEMBRE	SE	0	298	452	509	403	418	283	120	11	37	2P	15	10
ET	s	0	27	138	254	340	383	440	383	341:	254	1,36	37	0
MARS	50	0	15	28	37	-64	120	283	416	463	509	452	298	1_0
	0	,	15	28	37	A1	41	14	147	311	437	489	364	0
	NO Hodzoniale	0	15	2F 210	37	460	553	575	563	480	390	182	160	0
		0	7		31	34	37	37	37	74	31	10	7	1-
	NE	0	106	100	31	34	57	37	77	3.4	111	10	7	0
	E	<u>c</u>	267	368	383	276	122	- 37	37	34	31	10	7	. 0
OCTOBRE	SE	0	254	415	360	513	452	335	127	63	.31	10	1 2	0
E1 FEVRIER	\$ \$0	0	66	- 1	327	430	1	336	452	513	327	415	254	0
	c	0				34	+			276	363	388	267	-0
	NO	0	1		1	34	1 '	1		36	37	100		o
	Horizontele	0	24	90	201	317	396	405	386	317	201	90	24	0
	N	0	1	1	1 - "		1	- 1	1		55		0	0
	NE E	0			1	- 1	1 '	1 '		28 28				0
HOVEMBRE	SE	1 0	-				-	-1-		+			-	
ET	\$	ì		186			1	1	1	1		1	1	١.
JANVIER	\$0		1	9	27	65	219	364	452	491	452	342	0	
	0		1	9 9				1	1	1 '	1		•	1
	NO Horizontale			0 50			1	1 .		1		1	1 -	1
	N		+					\dashv	\dashv -		-\		+-	
	NE	1	1	0 2	1		_		I		1	1 '	١.	1
	t	(0 221	270	213	3 0	7 3	3	28	19) E	<u> </u>	
	SE	- 1	ı	0 27				1			1 -	ı	1 1	
DECEMBRE	5	1	* 1	0 16			1	1			1 - 1	1	1	1
	\$0				6 2	1			{		-			\rightarrow
	0		·		6 1! 6 1!	. 1 -	1 '		ı,	1				
	Horizontele		o l	0 2	* I	1 '	1			1 '	- 1 '			- 1

TABLEAU 8 - APPORTS EFFECTIFS D'UN VITRAGE ORDINAIRE ET NON PROTEGE [W/m²]

40° Latitude Nord

	-						HEUR	E SOLA	MAE					
MOIS	MOIS	6	7		•	10	11	12	13	14	15	16	17	18
	N NE	90 396	37 393	37 295	41 157	44 50	44	44	44	44	41 41	37 37	37	90 24
	E	437	616	509	427	295	129	44	44	44	41	37	31	24
	SE	201	320	396	425	390	307	191	72	44	41,	37	31	24
NIUL	S S O	24	31	50 3 <i>1</i>	122	213 44	273 72	191	273	213	122,	50 396	31	24 201
ŀ	0	24	31	37	41	44	44	44	129	295	427	509	515	437
	но	24	31	37	41	44	44	44	44	50	157	295	393	396
	Horizontale	138	270	418	544	619	673	691	673	619	544	418	270	138
	N NE	66 358	34 368	31 213	41	44	44	44	44	44	41	37	34	66 19
	E	412	506	613	443	302	135	44	44	44	41	37	31	19"
JUILLET	SE	204	336	421	449	427	342	219	81	44	41	37	31	19
ET MAI	8 50	19	31	6E 31	157	252 44	307 81	333 219	307	252 427	157 449	66 421	31	19 204
mrsi	0	19	31	37	41	44	44	44	135	302	443	513	506	412
Ì	МО	19	31	37	41	44	44	44	44	46	138	273	386	358
	Horizontale	103	235	374	500	590	645	664	645	590	500	374	235	103
	N NE	24	24 296	31 219	37 97	41	44	44	44	41	37 37	31 31	24	12
	E	295	456	496	443	307	142	44	44	41	37	31	24	12
TUOA	SE	166	349	452	493	480	415	280	125	41	37	31	24	12
ET AVRIL	s so	12	28	113	230	329	.408 125	434 280	40E	329 480	230 498	113	28 349	166
Aviiic	0	1-12	24	31	37	41	44	44	142	307	443	496	456	295
	МО	12	24	31	37	41	44	44	44	41	97	219	295	239
	Horizontale	41	144	280	412	502	563	681	563	502	412	280	144	41
	N NE	0	182	144	31 50	37	37	37	37	37	31	24	12 12	0
	E	0	320	434	408	292	135	37	37	37	31	24	12	ő
SEPTEMBRE	SE	0	270	437	509	513	456	329	175	53	31	24	12	0
ET MARS	s so	0	12	160	292	412 53	175	496 329	471 456	412 613	292 509	160 437	34 270	0
mans	0	0	12	24	31	37	37	37	135	292	408	434	320	0
	МО	ű	12	24	31	37	37	37	37	37	50	144	182	0
	Horizontale	C	46	153	276	371	440	465	440	371	276	153	46	0
	N NE	0	0 99	12 63	22	28 28	31	34	31	28 28	22	12	0	0
	E	0	230	311	329	248	109	34	31	26	22	12	0	0
OCTOBRE	SE	0	217	349	456	493	452	361	217	75	22	12	0	0
ET FEVRIER	s so	0	53	166	311	430	493	624	493	430	311	166	53	0
FEVRIER	0	0	0	12	22	75	31	361	109	463 24E	456 326	349	217	0
	но	0	0	12	22	28	31	34	31	28	22	63	P0	0
	Hotizoniale	0	6	59	142	226	270	295	270	226	142	59	6	0
	NE NE	0	0	2	12	19	24	28	24	19	12	2	0	0
	E	0	0	15	201	179	87	28 26	24	10	12	2 2	0	0
NOVEMBRE	St	0	U	195	298	388	300	33€	210	66	12	2	0	0
ET JANVIER	s so	0	0	107	219	364	449	460	449	364	219	107	0	0
JANVIER	0	$-\frac{1}{0}$	- O	- 2	12	19	210	336	399	179	296	195	0	1-8
	NO	6	0	2	12	19	24	28	24	19	12	15	0	
	Horizontale		0	12	41	94	147	16€	147	94	41	12	0	1
	N NE	U	0	0	9	15	19	22	19.	15	9	0	0	
	NE E	0 0	1 -	0	85	147	19	22	19	15	9	0	0	
	SE	0	+	0	┥──	336	384	314	195	78	9	0	1-5	1—
DECEMBRE	s	0	U	0	97	311	412	443	412	311	97	0	0	1
	- <u>so</u>	0	- - -	_ 0	9	78	195	314	364	336	129	0	0	<u> </u>
	0	0		0 0	1	15	19	22	12	147	85 9	0	0	
	Horizontale	0	1	1	1		103	125	103	59	15	0	0	6

TABLEAU 9 - APPORTS EFFECTIFS D'UN VITRAGE ORDINAIRE ET NON PROTEGE [W/m²]

50° Latitude Nord

.TABLEAU 10 - COEFFICIENT DE CORRECTION A APPLIQUER AUX APPORTS EFFECTIFS POUR TENIA COMPTE DE L'ALTITUDE ET DU TROUBLE DE L'ATMOSPHERE

ALTITUDE		AMIJO CHARQI V Bebne		POUSS		MC	YENNE	CIMATS MENT moye	BRUME	υx			ATS CU	.AIRS rations)	
[m]	8 [h] 18 [h]	# [h] 15 (h)	18 [h] 14 [h]	11 [h] 13 [h]	12 (ħ)	8 (h) 18 (h)	1 [h]	16 [h] 14 [h]	11 [h] 13 [h]	12 [h]	8 (h) 18 (h)	9 (h) 15 (h)	10 [h] 14 [h]	11 [h] 13 (h)	12 (h)
ŧ	0,85	0.86	0,87	0.88	0,89	0.90	0,91	0,92	0,93	0.94	0.96	0.97	0,98	0,99	1
500	1,05	1,04	1.04	1.03	1.03	1,04	1.03	1,03	1,03	1,03	1,04	1,03	1.03	1.02	1.02
1 00C	1.1	1.06	1,08	1,06	1,06	1.09	1.06	1,06	1,05	1.05	1.08	1,05	1.05	1,05	1,04
1.500	1,15	1.12	1,11	1,10	1.10	1,12	1.10	1,10	1.09	1.09	1,10	1.09	1,08	1,00	1,06
2 000	1,21	1,18	1,15	1.13	1,13	1,18	1.15	1,12	1,12	1,12	1,13	1,11	1.10	1,10	1.09

T	alle 23	Wall Construction Group Description	
Mass	//-Value (\V/m ¹ +*(')	Group	Cude Numbers of Layers
405			(ser l'able 8)
105	2,013 2,033	101 6 mm bace Brick 1 (Brick)	
110	2.356	C Air Space F 101.6-mm Face Brick	A0, A2, B1, A2, F0
119	0.987-1,709	D 101.6-mm Common Brick	A0, A2, C4, E1, E0
***	0.707-1.707		A0, A2, C4, B1/B2, 1-1, 1:0
1 113	0.630	101 6 mm Common Brick	·
635	1,714	B = 50 8-mm fusulation 4 101.6 mm Common Brick B = 203,2-mm Common Brick	A0, A2, B3, C4, 1:1, 1:0
6.35	0.874 1.179	A faxilation of Air Space + 203.2-mm Common brick	∧0, ∧2, €9, 1∃1, 1∃0
		the state of the space + 203, 2-min Common brick	A0, A2, C9, 111/112, 1-1, E0
459	1.987	101.6 mm Face Brick + (II.W. Concrete)	
474	0.658	Air Space + 50.8-turn Concrete	A0, A2, B1, C3, B1, L0
698-928	0 625 0.636		A0, A2, B3, C3, E1, E0
		A Air Space or Insulation + 203,2-mm or more Concrete	
			A0, A2, B1, C10/11, E1, E0
ters	1 911	101 6 mm Face Brick 4 (L. W. or H. W. Concrete Block)	
io i	1.811	G 101.5-mm Block	A0, A2, C2, 11, 10
142	U 868 1,197 1,555	D. Air Space or Insulation 1 101.6-mm Block	A0, A2, C2, B1/B2, 1-1, 10
356-114	1.255-1,561	17 203.2-mm Block	A0, A2, C7, A6, 10
	(255.1, 10)	C Air Space or 25 4-mm fasulation 1-152 4-mm	A0, A2, B1, C7/C8, 1-1, F0
134	0.545 (1.607	or 201.2 mm block B S0 K-mm brotheten 1, 201.2 mm broth	
		203.2 11111 111063	A0, A2, B1, C7/C8C11, I/a
347	2.163	101 6 mm Face Brick + (Clay Tile)	
317	1,595	D 101.6 mm Tile	A0, A2, C1, 13, 10
1:7	0.959	D Air Space + 101 6 mm File C Involution + 101 6 mm 735	A0, A2, C1, 111, L1, L0
16.9	1.561	TOTAL HIM THE	A0, A2, C1, 10, F1, 10
169	0.806 1,255	end a mini till	Δ0, Δ2, C6, I-1, 1 α
		B Au Space or 25.4 mm fusulation 3 203.2 mm file	A0, A2, C6, B1/B2, E1, L0
1 1	0.551	Δ 50 8 mm Insulation + 203.2 mm Tile	
			A0, A2, 113, C6, 1-1, 1-0
les	1.321	H W Concrete Wall + (Finish)	
Тик	0.675-1.136	b. 101.6-mm Concrete D. 101.6-mm Concrete D. 101.6-mm Concrete	A0, A1, C3, F1, F0
	0.075-1.110	The concrete T 23,4 min	A0, A1, C3, B2/B3, L1, E0
lon	0.675	or 50.8 one Insulation	
512	2.782	C 203.2-mm Insulation + 101.6-mm Concrete	A0, A1, B6, C3, 1:1, 1:0
517	0.6\$3-1.(Ki)		A0, A1, C10, I-1, I-0
		B 203.2-mm Concrete 4 25.4-mm or 50.8-mm Insulation	A0, A1, C10, B5/B6, E1, E0
517	0.653	A St. 8-min Insulation + 203.2-min Concrete	·
76.3	2,390	B 304.8-mm Concrete	A0, A1, 83, C10, E1, E0
76.2	0.642	A 304.8 mm Concrete 4 Insulation	A0, A1, C11, E1, F0
		1 W and the Market and the second second	A0, C11, B6, A6, 1-0
1.12	0.914-1,491	1 W and H.W. Concrete Block 1 (Finish) F 101.6-mm Block 4 Air Speciffmentalism	
142 (8)	0.596 0,647		A0, A1, C2, B1/B2, 1:1, E0
354 515	1.669 2.282	E 50.8-mm Insulation 4 101.6-mm Block E 203.2-mm Block	A0, A1, B3, C2/C3, 1:1, E0
30K) 3.AM	0.846 (2982	D 203.2-mm Block + Air Space/Insulation	A0, A1, C7/CH, E1, F0
		Charles a contract of the Spaces Insulation	A0, A1, C7/C8, B1/B2, E1, E
190	2.379	Clay Tile + (Finish) F 101 forum Tile	•
190	1,720		^ A0, A1, C1, E1, E0
190	0.993	F 101.6-mm Tile 4 Air Space 1: 101.6-mm Tile 4 25.4-mm Insulation	A0, A1, C1, III, 1:1, 1:0
1.12	0.625	D 50.8-min Insulation + 10f.6-min Tile	A0, A1, C1, B2, E1, 1:0
3ciX	1.681	D 203.2 mm File	A0, A1, 113, C1, 1:1, 1:0
lus Lus	0.857 1,112	C 201 2 mm Tile 1 Air Source/25 4 mm Insulation	A0, A1, C6, B1/112, 1-1, 150
1114	0.562	B St 8 mm Insulation + 203.2 mm Tile	A0, A1, C6, B1/B2, 1-1, 1:0
			A0, A1, 101, C6, 1-1, 1 0
21 17	0 Ste 1 W	Metal Cortain Wall	
	0.412.1.199	G With/without air Space 1 25 4 mm/50.8 mm	A0, A4, B5 B6/B12, A3, L0
		76 2 and lastilation	
7.8	0.459 1.010	Frame Wall	
		G 25/4 mm to 76.2-mm Insulation	A0, A1, B1, B2/B3/B4, E1, E0
			1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

EAU 11 - COEFFICIENTS DE CORRECTION N AFFECTANT LES APPORTS EFFECTIFS MAXIMAUX D'UN VITRAGE SIMPLE

SANS ECRAN INTERIEUR ET FONCTIONNEMENT CONTINU

20 s E	TION											HEU	RE S	OLAI	R E										
MTAT Jde 1	TRUE D		•		- Malin							–		Après	-midi								talin		
OMENTATION (Latitude Nord)	CONSTRUCTION	6	7		9	10	11	12	13	14	15	14	17	10	19	20	21	22	23	24	1	2	3	4	5
ME	mayenne	0,17 0,19 0,31	0,31	0,34	0.39	0.36	0,34	0,27	0,24	0.22	0,21	0, 19	0, 17	0, 16	0,14	0,12	0, 10	0,07	0,01	0,07	0,01	0,05	0,07 0,05 0	0,04 0,Q4 0	0,04
ŧ	fourde møyenne legere	0, 16	0,25	0,40	0,46	0,46	0,42	0,36	0,31	0,21	0,25	0, 23	0,20	0,18	0,15	0.14	0,12	0,11	0.09	0,08	0,05 0,08 0,01	0,04	0,06	0,07 0,05 0	
11	lourde moyenne légère	0.05	0.12	0,23	0.35	0.44	0,49	0,51	0.47	0,41	0,34	0,31	0,27	0,24	0,21	0, 18	0,16	0,14	0,12	0,10	0, 12 0,09 0,01	0.01	0.04	0,09	0,01 0,04 0
	ietera Woheuur Jonige	0,10 0,07 0	0,10 0,0 <i>t</i> 0	0,12	0,20	0,30	0.39	0.41	0.54	0,54	0,57	0,53	G. 45	0,37	0,31	0,77	0, 23	0,20	0, 16	0, 16	0, 17 0, 14 0,02	0,17	0,11	0, 10	0,12 0,01 0
10	lourde moyenne légère	0,05	0.01	0,01	0,05	0,01	0,14	0,22	0,31	C,42	0,50	0,53	0,51	0,44	0,35	C. 75	0,2€	0.22	0,19	0,17	0, 1£ 0, 15 0,63	0, 13	0,12	0,11	0, 12 0,01 0,01
	lourde moyenni légéte	0,05	0,04	0,05	0.05	0,09	0,05	0, 10	0, 12	C, 15	0,30	0,40	0,4	0,51	0,42	0,35	6,30	0,75	0,22	0,19	0, 1t 0, 1t 0,0±	0,14	0,13	0,11	0.05
NO	lourde moyenne 14g4re	10,0	C.04	0,05	0,09	0,05	0,09	0.09	0.09	c, 11	0, 19	0,29	0,40	0.46	0.40	C , 32	0,24	0,22	0, 19	0,16	0,16 0,14 0,05	0, 13	0,11	0,10	0,04
N e1 Ombre	tourde moyenne légére		0,33	0,44	0,51	0,57	0,62	0,66	0,76	0,74	0.76	0,79	0,40	0,60	0,51	0,44	0,37	0,32	0,29	0,27	0,27	0,21	0, 18	0,16	0,13

THERN 12 - coefficients de correction is affectant les apports effectifs maximalix d'un vitrage sin

AVEC ECRAN INTERIEUR ET FONCTIONNEMENT CONTINU

X crt	TYPE DE Bastruction											HEL	JRE E	اماه:	F E										
ORIENTA (Latitudo	YPE			-	≠alin									Aprés	·mi¢i								⊭atin		_
ונאנון	COM	ŧ	7	E	ç	10	11	12	13	14	15	16	17	18	15	20	21	22	23	24	1	2	3	4	5
ME			'		- , .						1 ' I				1 1	' '						- 1	l i	0,04	
	légére	0.55	0.76	0,73	C,58	0.36	0,24	0,19	0, 17	0,15	0, 13	0,12	0,11	0,07	0,04	0.07	0.02	0,01	0.01	0	0	0	0	0	c
ŧ	moyenne	0,40	CR	0, 45	C,63	1 '	0,35	0.24	C. 22	€,20	0,18	0, 1é	0,14	0,12	0,05	0.01	0.07	6,04	0.05	0.05				C,04 C,03 O	
11	lourde moyenne légére	I	0,21	0.47	C. 61	0.64 0.67 0.84	0,45	0,57	C.44	C . 25	0.24	0,21	0, 18	0,15	0, 12	0,10	0,05	0,04	0,07	0.04	1		1 '	0,05 0,04 0	1 '
•	lou. De moyenne légére	0.04	0,04	0,22	0,38	1	0,63	0,70	0,71	0.69	0.59	0,45	0,26	0,22	0, 11	0,16	0, 13	0, 12	0, 10	0.05	0,01	0,67	1 '	0,07	1
10	tourde moyenne légére	0,07		0.01	C,08	0, 11 0, 10 0,09	0.24	0,40	C.11	0,44	0.76	0.64	0.50	0.26	0.20	6, 17	0,15	0, 13	0,11	0, 10	0.05	C.08		0,04	1
0	lourde moyenns légére	0.07	0.04	0.0	0.09	0.09	0,09	0,01	0, 10	0.34	0.54	0.44	0,68	0.40	0.25	s lo. 2≺	0.17	0.15	0.13	0.11	0.10	0.08	0.07	0,04 0,04 0,01	0.0
NO	lourde moyenna lagare	0.07	0.01	0.01	0.01	0,10	0,10	0, 10	0, 10	0, 10	0,33 0,34 0,35	(0.5	2 0.65	0.4	(0, 2;	3 0, 11	1 0.15	0.12	0.1	1 0.01	0.44	0 07	0.04	0,07	اه د
el Ombre	lourse moyenne legere		0.3	1 0.67	0.7	2 0,74 3 0,40	0.79	0.8	1 0,4	3 0.6	5 0.87	7 0.8	E 0.9≺	0.9	1 0.34	0 0.2	4 0.2	2 l O. 11	0.1	ر آن ا ا	รื่อำเ	1 0 12	0 10	0,01	100

TABLEAU 13 - COEFFICIENTS DE CORRECTION N AFFECTANT LES APPORTS EFFECTIFS MAXIMAUX D'UN VITRAGE SANS ECRAN INTERIEUR. FONÇTIONNEMENT PENDANT 18 HEURES

atitude Nerd)	CTION	-						į	HEURE	SOLAI	RE						
ORIENTA (Latitude	NSTRU				Matin				-				Aprês-	midi			
2 3	- 8	4	7	1	•	10	11	12	13	14	15	16	17	10	17	20	21
	lourde	0, 28	0.37	0,47	0,41	0.38	0.36	0.33	0,31	0,23	.0,22	0,20	0, 19	0, 17	0, 15	0, 14	0, 12
RE	moyenne	0, 28	0,34	0.45	0,45	0.41	0.39	0.31	0,27	0.27	0.21	0, 19	0, 17	0, 16	0,14	0,12	0, 16
1	légéra	0.33	0.57	0.66	0.62	0.46	0.33	0.76	0.21	0,12	0.16	0, 14	0, 12	9.09	0.06	0.04	0.03
	lourde	0.29	0.38	0.44	0.48	0.48	0.46	0.41	0.36	0,28	0.26	0,23	0,22	0, 20	0, 18	0, 16	0, 14
	moyenne	0.27	0.38	0.48	0.54	0.52	0,48	P. 41	0.35	0.28	0,25	0.23	0, 20	0.18	0.15	0,14	0, 12
	légère	0.29	0,51	0.68	0.74	0.69	0.53	0.38	0,27	0,22	0, 18	0, 15	0, 12	0.09	0.06	0,04	0.03
	lourde	0,24	0,29	0.35	0,43	0,49	0,53	ρ. 53	0,51	0.39	0.35	0,32	0.29	0.76	0,23	0,21	0, 17
3E	moyenne	0, 19	0,24	0.33	0,44	0.52	0,57	0.57	0,53	0,41	0.36	0,31	0.27	0.74	0.21	0.18	0.16
- 1	légére	0.03	0.20	0.41	0.60	0.73	0.77	0.72	0.60	0.44	0.32	0, 23	0.18	0, 14	0.09	0.07	0,05
	lourde	0,33	0,31	0.32	0.37	0.43	0,49	0.55	0.60	0,57	0.51	0.48	0.47	0, 37	0.33	0,24	0,26
3	moyenne	0.27	0.24	0.72	0,24	0.42	0.50	0.58	0.60	0.60	0.57	0,53	0,45	0,37	0.31	0,27	0,23
- 1	légére	0.06	0.04	0.15	0,31	0,49	0.65	0.75	0.82	0.81	0,75	0.61	0,42	0.28	0, 19	6, 13	0,01
	lourde	0,35	0.32	0.30	0,28	0.76	0,28	0.30	0.37	0,43	0,47	0.46	0.40	0.34	0,30	0,27	0, 24
[11	moyenne	0,31	0, 28	0.25	0.24	0.22	0,26	0.33	0.40	0.46	0,50	0.53	0,51	0.44	0.35	0.79	0, 26
	légére 	0,11	0, 10	0,10	0.05	0. 10	0.14	9.35	0.54	0.68	0,78	0,78	0,68	0.46	0,29	0,20	0,14
	leurde	0,38	0.34	0.32	0, 2 t	0,26	0,25	0.23	0,25	0,26	0,27	0.36	0,42	0,44	0.38	0.33	0,21
0	moyenne	0.34	0.31	0.78	0,25	0.23	0,27	0.21	0,21	0,73	0.30	0,40	0,48	0,51	0.43	0.35	0.30
	légère	0. 17	0.14	0.13	0,11	0,11	0. 10	0.10	0,15	0,25	0,49	0.67	0.76	0.75	0.53	0.33	0,22
	lourde	0,33	0.30	0,71	0.26	0,24	0.23	0,22	0,20	0, 18	0.17	0,25	0,34	0,35	0.34	0,29	0, 24
HD	moyenne	0.30	0,78	0.75	0,23	0,22	0,20	0, 19	0, 17	0, 17	0.19	0.29	0.40	0,46	0.40	0.32	0,24
. •	légére	0, 18	0,14	0.12	0.12	0, 12	0, 12	0, 12	0, 11	0, 13	0.27	0,48	0.65	0.73	0,49	0.11	0,21
H	lourde	0,31	0.57	0.64	0.48	0,72	0.73	0.73	0.74	0.74	0,75	9.76	0,72	0,78	0.59	0.52	0,44
æt	moyenne	0,30	0.47	0.60	0.67	0,72	0,74	0.77	0.78	0.79	0.80	0.81	0.87	0,83	0.60	0.51	0.44
Ombre	légère	0.04	0.07	0.53	0.70	0.78	0.84	0.88	0.91	0.93	0.95	0.97	89.0	0.95	0,62	0.34	0.24

COEFFICIENTS DE CORRECTION N' AFFECTANT LES APPORTS EFFECTIFS MAXIMAUX D'UN VITRAGE SINAL TABLEAU 14 AVEC ECRAN INTERIEUR - FONCTIONNEMENT PENDANT 16 HEURES

Nord	CTION								HEURE	SOLA	IRE						
BIENTA Stitude	TYPE DE Onstructio			Mai	in								Après	midi			
(1.31	200	6	7	ı	9	10	11	12	1)	14	15	16	17	18	15	20	21
	louise	0.53	0.64	0.59	0.47	0,31	0.25	0,24	0,22	0, 18	0, 17	0,16	0,14	0,12	0,09	90.0	0,07
Mt	moyenne Iésère	0,53	0,65	0,61	0,50	0,33	0,27	0.22	0.21	0, 12	0, 16	0,15	0,13	0,11	0.04	0.07	0,0 <i>£</i> 0,02
		0,38	0.77	0.73	0,50	0,36	0.7-		0, 17		0,13	0,17					
. 1	louide	0,47	0.63	53.0	0,64	0,54	0, 3ŧ	0,27	0.25	0.70	0,18	0,17	0,15	0,12	0, 10	0.09	0,01
,	mayenne Iéstie	0,46	0,63 0,71	0,70	0.67 0.75	0,56	0,31 0,47	0.27 0.25	0,74 C,15	0,16	0,18	0,16	0,14	0,12 0,07	0,09	0,01	0,07 0,02
	lourde	0,14	0.37	0,11	0,66	0,70	0.68	0.58	0,46	0,27	0,24	0,21	0, 19	0,16	0,14	0,12	0,11
5.6	moyenne	0,11	0.35	0,53	0.66	0.72	0.65	0.61	0.47	0.29	0.24	0.21	0,18	0,15	0,12	0,10	0.05
	16861+	0.07	0.31	0,57	0.73	0,84	0,81	0,69	0,50	0.30	0, 20	0, 17	0, 13	0.00	0,05	0,04	0.03
	lourde	0,19	0,18	0,34	0,48	0,60	0,68	0,73	0,74	0.64	0.50	0,42	0,24	0.22	0,19	0,17	0,15
5	moyenne	0,16	0.14	0,21	0.46	0.59	78.0	0.76	0,70	0.69	0.50	0.45	0,2€	0,22	0,16	0. 16	0, 13
	legère	0,12	0,23	C. 11	0.64	0,77	0,84	0,88	0,62	0.56	0,50	0,24	0.16	0,11	0,01	0,03	0.04
	lourde	0,22	0,21	0, 26	0,20	0,20	0,32	0,47	0,40	0,63	0,66	0,61	0,42	0,23	0,19	0, 18	0,16
50	moyenne	0,20	0, 19	0.18	0, 17	0,18	0.31	0,46	0,40	0.66	0,70	0,64	0.50	0.26	0,20	0, 17	0,15
	16xtre	0,08.	0.01	0,00	0,00	0, 10	0,24	0,47	0.67	0,81	0,86	0,79	0,60	0,26	0,17	0,12	0,01
	lourde	0,23	0.23	0,21	0,21	0,20	0,19	0,18	0,25	0,36	0.57	0,63	0,65	0.55	0,72	0, 19	0,17
0	moyenne	0,22	0,21	0,15	0,19	0,17	0,16	0, 15	0.23	0.36	0.54	0.66	93,0	0,60	0,25	0,20	0,17
	légère	0,12	0, 10	0, 10	0,10	0,10	0, 10	0,09	0,14	0,47	0,65	0,81	0,85	0.74	0,30	0, 19	6,13
	lourde	0,21	0,71	0,20	0,19	0, 18	0, 18	0,17	0,16	0,16	0.33	0,49	0,61	0,60	0,19	0,17	0,15
NO	moyenne légère	0,19	0,19	0,18	0,17	0,17	0,16	0,16	0,15	0, 16	0,34	0,52	0.65	0,23	0,18	6,16	6,12
N	lourde	0,23	0,58	0,75	0,79	0,80	0,80	0,81	0,12	0,83	0,84	0,86	0,87	0,81	0,39	0,35	6,31
et Ombre	moyenne légére	0,25	0.46	0,73	0.78	0,82	0,82	0,83	0,84	0.85	0,87	0,88	0,89	0,90	7540	0,34	6,29

COEFFICIENTS DE CORRECTION N AFFECTANT LES APPORTS EFFECTIFS MAXIMAUX D'UN VITRAGE SIMPLE

FONCTIONNEMENT PENDANT 12 HEURES

١,						_													-							
•	HOT I	DE CTION				AV	EC E	CRAN	INTE	RIEU	*			l				. 2	KS E	CRAP	INT	ERIE	UR			
	•	1											HÉN	RE S	OLAII	RE _										
		HETRE	21			Matin					Ap	rås-m	l d i				M.	tin					Aprè	-mid		
	CLARTER	T: 00	ı	,	E	•	10	11	12	13	14	15	16	17	4	7	1	,	10	11	12	13	14	15	16	17
ſ		tourde	0 55	0.67	0,62	0,45	0,33	C. 27	0.25	C.24	0.22	0,21	0.20	0, 17	0,34	0.47	0,47	0,45	0,42	0,39	0,3€	0,33	0.30	0,21	0,24	0,25
╽	KF	morenne	0.59	0,68	0,64	0,52	0.35	0,25	0,24	0.73	0,20	0, 19	0, 17	0, 15	0.35	0,45	0,50	5.45	0,45	0,42	0,34	0,30	0,27	0,26	0,23	0,20
i		16 g 4 79	C e 7	0.80	0.75	0,60	0.37	0.25	0.19	0.17	0, 15	0, 13	0, 12	0,11	0.40	0,67	0,65	- 4	0,48	0,34	0, 27	0, 22	0, 16	0, 16	0,14	0, 12
IŢ		leurdi	C 51	0.66	0,71	0,67	0.57	0,40	0,29	0, 26	0.25	0,23	15.0	0, 19	0.36	0.44	0.50	0,53	0.53	0.50	0.44	0.39	0.36	0.34	0,30	0.28
ı	E	meyenne	(,57	0,47	0.73	0,70	0,50	0,40	0,25	0,2e	0,24	0,71	0, 19	0, 16	0.34	0.44	0.54	0, 54	0.57	0.51	0.44	0.39	0,34	0,31	0,28	0,24
l		légéra	6.53	0.74	0,82	0,61	0.65	0,43	0.25	G. 15	0,16	0, 14	0.11	0.05	0.34	0.54	0,71	0.76	0,70	0.54	0.35	0.2€	0.23	0, 16	0, 15	0, 12
ſ		teurde	0,20	0.42	0,59	0,70	0.74	0.71	0.61	0.48	0,33	0.30	0.26	0.74	0.14	0.37	0,43	0, 50	0.54	0.58	0.57	0.55	0.50	0,45	0,41	0,37
1	SE	meyenne	C, 18	0,40	0.57	0,70	0.75	0.72	0,63	0,49	0,34	0, 2E	0.25	0,21	0.25	6,33	2,41	0,51	0,58	0.61	0,61	0.56	0.49	0,44	0, 37	0,33
		14 8 4 10	0.05	0.35	0,61	0.78	0.46	0,87	0,65	0.50	0.30	0,20	0, 17	0, 13	0.14	0.27	0,47	0.64	0,75	0.75	0,73	0,61	0,45	0.32	0. 23	0, 18
		lourge	0.26	0.25	0.40	0.53	0.64	0,72	0.77	0,77	0,73	0,67	0.49	0,31	0,47	0,43	0.42	0.46	0.51	0.54	0.41	0.45	0.66	0.45	0.41	0.54
١	1	merenne	6.2e	0,22	0,38	0,51	0.64	0,73	0,75	0.75	0,77	0.65	0,51	0,31	0,44	0.37	0,39	0,43	0,50	0.57	0.64	0.68	0,70	0.68	0.43	0.53
1		161944	0 21	0, 29	0,48	0.67	0.75	0,81	0,81	0,83	0,56	0.50	0,24	0. اد	0.78	0.19	0,25	0,38	0,54	0.68	0,78	0,84	0.82	0,76	0.41	0,42
1		lcurce	C 31	6.27	0,27	0.24	0.25	6,27	0,50	0,63	0.72	0.74	0.69	0.54	0.51	0.44	0,40	0.37	0.34	0.34	0.41	0.47	0.54	0.57	0.40	0.58
1	10	meyenne	0.33	0,7E	0.25	0.23	0.23	0.35	0,50	0.64	0.74	0.77	0,70	0,55	0.53	0.44	0.32	0,35	0.31	0,33	0,35	0.46	0.55	0.62	0.44	0,40
L		liin	()(C, 21	C. 18	0, 15	0.14	C. 27	0,50	0,69	0,62	0.87	0.79	0.60	0.48	0,32	0.25	0,20	6, 17	C, 15	0.39	0.56	0,70	0.80	0,79	0.69
1		lours	0,63	0,31	0,28	0, 27	0,25	0.24	0,22	0.29	0,46	0.61	0.71	0.72	0.56	0,49	0.44	0.39	0.36	0,33	0,31	0,31	0.35	0,42	0,49	0,54
1	C	meyanna	0.67	0,33	0, 28	0.26	0.24	0,22	0.30	0,21	0.44	0.61	0,72	0,73	0,40	0.52	0.44	0.39	0.34	0,31	0.25	0.26	10.33	0.43	0.51	0.57
		14 2 6 7 6	0.77	0.34	0.25	0,26	0, 17	0,14	0,13	0,22	0,44	0,67	0.82	0,85	0.77	0.56	0,38	0, 28	0,22	0.18	0.16	0.19	0,33	0,52	0,69	0.77
		levede	0,68	C. 28	0,27	0.25	0.73	0,22	0.20	0, 19	0,24	0,41	0,56	0.67	0.45	0.44	0.39	0.36	0,33	0.30	0,28	0.26	0,26	0,30	0,37	0.44
1	ND	meyenne	0,71	0,31	0.27	0.24	0.22	0.71	0.15	0, 18	0, 23	0.40	0.58	0.70	0.54	0.45	0.41	0.35	0.31	0.21	0.25	0.23	0.24	0.30	0.39	0.41
		162610	4.67	6,33	0.25	0, 20	0.18	0.15	0.14	0, 13	0, 19	0,41	0.64	0.60	0.75	0.53	0.36	0.2€	0.24	0. 15	0, 17	0,15	0, 17	0,30	0,50	0.64
	×	loures	0 54	0.90	0.96	0.96	0 56	0.56	0.76	0,94	0.96	0.86	0.56	C Fe	0.75	0.75	0.79	0,83	0.14	0.11	C. E.E	0.84	0 91	0.92	0.53	0 93
1	41	meyenne	C 58	0.98	0.98	0,98	0.98	0.98	0,98	0.98	0.96	0.98	0.58	0.58	0,81	0,84	0.86	0.85	0.91	0 53	0.53	0.94	0,94	0.95	0.95	0.55
1	emk ra	16 611		1	1	1	1	1	1	1	1 1	1	1	11	1	1	Ìı	1	Ì	1	1	1	1	i,	1,	1

RÉFRIGÉRATION SOLAIRE

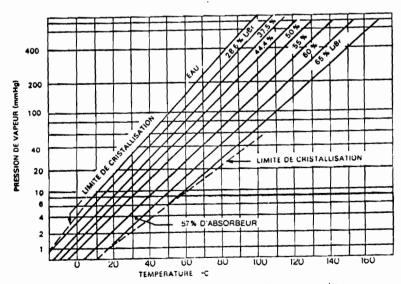


Fig. 19 - Diagramme d'équilibre pression-température pour les solutions bromure de lithium - eau.
Un tel diagramme est indispensable au projeteur pour fixer les paramètres de fonctionnement d'un système à absorption.

TABLEAU 16 - FACTEUR SOLAIRE F DES VITRAGES SPECIAUX EN SIMPLE EPAISSEUR

TYPE DE VITRAGE	EPAISSEUR MOYENNE { mm }	KACTEUR BOLAIRE F	COEFFICIENT DE TRANSMISSION T pour i 40	COEFFICIENT DE TRANSMISSION THERMIQUE K [W/m' °C]
Verre & vitre				
normat	2 & 3	1	0.86	5,68
fort	4	0.98	0.84	5.68 5.68
épais		0,96	0,82	5,64
Glace claire ordinalre	6	0.95	0.80	5.65
	8.6	0.92	0.76	5,68 5,68
	10.5 12	0.90	0.73 0,71	5.68
Verre absorbent	5.5	0,71	0.51	5,62
Blace absorbants		1		1
couleur bronze	6	0.64	0,49	5.64
COURT DIGITE	ŧ	0.60	0,40	5.68
	10	0.54	0.34	3,68
couleur grise	e	0.65	0.50	5.68
	ŧ	0.60	0.41	5.64
	10	0.55	0,36	5,64
couleur verte	6	0.63	0.47	3.68 5.68
	8 10	0.59 0.53	0.39	5.64
Verre coloré				
rouge foncé	3 è 6	0.56	0.40	5.64
bleu foncé	3 8 6	0.60	0.42	5.64
gris foncé	3 8 6	0.32	0.45	5.68
gris-vert	3 8 6	0.46	0.47	5,68 5,68
opale clair opale foncé	3 & 5 3 & 6	0.43	0.50 0.45	5.61
ambre	3 1 6	0.70	0.55	5.61
Glacas rififehissanies				
claires (Paréllo 24)	6	0.72	0.55	5.60
	ŧ	0.71	0.56	3.44
	10	0.70	0,55	5.€
(Par€11o 50)	E	0.67	0.53	5.€
	. ŧ	0.66	0.51	5.63
	10	0.65	0,49	5.64
bronze (Péréllo 24)	6	0.55	0.34	5.62
	10	0.49 0.45	0.22	5,64 5,64
gris (Paréllo 24)	,,,	0.55	0.35	3.64
£1.3 (1.616.00 24)		0,50	0.35	5.63
	10	0.46	0.24	5,61
vert (Farélic 24)	1	0.53	0.33	3.61
	ŧ	0.49	0.78	5.68
	10	0.45	0,73	3.60
(Ferfile 50)	ė.	0.51	0.30	
	10 10	0.46 0.43	0.24 0.71	
film reflectour				_
Scotchtint (Minnesole) i				
sur glace chaire				
31 A mit		0.25		
film A 32		0.42		
sur glace absorbente				
bronze film A 18		0.33		
film A 33		0.41		
gris film A 18		0.12		
film A 33 Solar - X s		0.21		
sur glace cloire				
			1	1
5 · 50 5 · 60		0.50 0.28	i	

TABLEAU 17 . PACTEUR SOLAIRE F DES DOUBLES OU TRIPLES VITRAGES

	EPAIS- SEUR	EP.	AISSFUR (mi	m J		COEFFICIENT
TYPE DE VITRAGE	NOMI- NALE (mm)	glace Intérieu re	giace extérieure	lame d'air	FACTEUR SOLAIRE	[W/m² c]
Double vitrage aven couche						
leolante (Tharmolux) (1)				1		
(Inermolux) (I)	8	3	3 4	-	0.56	4.4
	to	5	Š	_	0.55 0,54	4,4. 4,4
Doubls vitrage even feme d'air Intermédiaire • verre clair	1:					
e glace claire	1.	3 6	3	3	0.90	3.5
(Thermorene ou Polygiass)	50	5	8 6	8	0.85 0.85	3,4 3.3
	24	6	6	12	0.85	3.1
	24 34	6 8	. 8 10	10 14	0.82	3.1
 Glace clairs intérieure — glace absorbante extérieure (Parsot ou Athermic) 		, and the second		, ,	0.80	3
grise	18 24	6	5	5	0.59	3,4
	32	8 8	8 10	8	0.52 0,48	3.3 3
verl	18	6	6	6	0.56	3.4
	24	6	6	8	0.51	3.3
bronze	32	4	10	[4	0,44	3
bronze	16 24	6 8	6	6	0.56	3.4
	32	8	8 10	8 14	0.52 0.47	3.3
 Giaca cisira intérieura — giaca réfiéchissanta extérieura (Paréllo ou Soltran) 					1,47	,
claire 24	18 24	6	6	5	0.64	3,4
	32	8 8	8 10	14	0.50 0.60	3.3 3
cleire 50	18	6	6	5	0.59	3,4
	24	8	8	, ,	0.36	3.3
.	32	8	10	14	0.55	3
bronze	10 24	6 £	6] 6	0.44	3,4
	32	å	8 10	14	0.37 0.34	3.3 3
gris	18	6	E	5	0.45	3.4
	24	8	8	,	0.36	2.3
vert 24	32	6	10	14	0,35	3
vert 24	18 24	6	E E	6	0.43	3.4
	31	•	10	14	0.37 0.35	3.3
vert \$0	18	6	6	6	0.40	3,4
	24 3 7	6	6	8	0.34	1.3
Blace cisirs extérioure place réfiéchissante intérieure (Faréllo ou Soltran)	14	8 6	10	14	0,31	3,4
e Bisce absorbante extérieure gisce réfiéchissante inté-			,	,	0.30	3
rie ure	18	6	6	4	0,22	3.4
Blace réfléchissante à l'exté- rieur et à l'intérieur	18	6	6	6 ,	0,13	3,4
Triple vitrage avec deux lames d'air intermédiaires Supertriver :						
transparent	13.5	3 + 3	3	2 + 2		•
filtrant	14,5	3 + 3	3,2	2.5 + 2.5	0.86 0.64	2.6 2.6
(une feuille de verre gris)					5,57	
Polygians friple :	30	6	6 + 6	6 + 6	0.85	2.3
	36 42	6	6 + 6 6 + 6	9 + 9	0.55	2.2
	-	· ·	0 7 8	12 + 12	0.65	2.1

1 — Fabrication actuellement abandonnée.

		F	COEFFICIENT		
DESIGNATION	DIMENSIONS [mm]	ensojelil é	08\0\0/N\	ombre E/SE/NE	[W/m² *C]
Dalles, pavés de verrs		•	}		
(Nevada, Prismalith)	150 × 150 × 100	0.55	0,34	· 0,51	3
	200 × 200 × 100	0.65	0.40	0,60	7
	300 × 300 × 100	0, 15	0,46	0,65	3
Coupaies d'éclairage plastique transparentes avec diffuseur	2 660 × 1 760 1 760 × 1 760	•	0,60		2,4
	Ø 1760				
transparentes sans diffuseur	ld		0,88		4,3
translucides	ld		0,88		4,3

TABLEAU 18 - FACTEUR SOLAIRE DES DALLES, PAVES DE VERRE ET COUPOLES D'ECLAIRAGE EN MATIERE PLASTIQUE

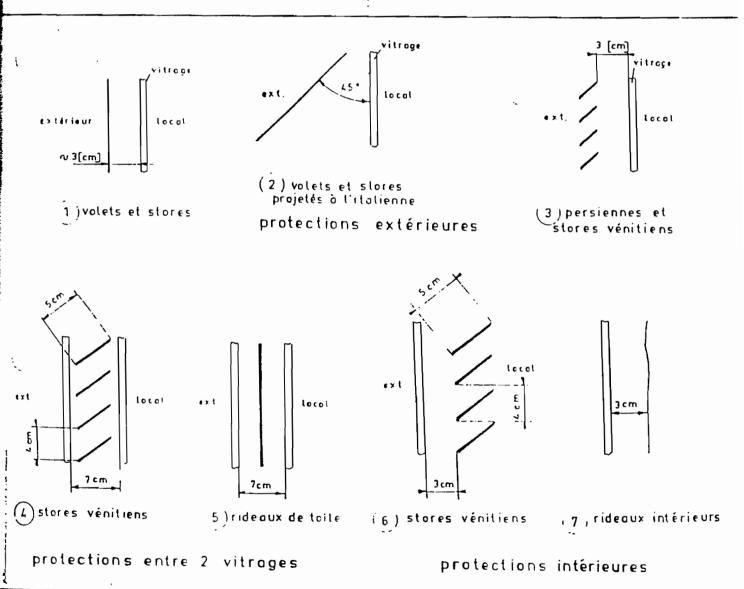


Fig 2.2.h - Différents types de protection antisolaire des vitrages

TABLEAU 19 - FACTEUR SOLAIRE DES PROTECTIONS INTERIEURES ASSOCIEES À DIFFERENTS VITRAGES

		TYPE DE PROTECTION INTÉRIEURE									
TUDE DE UITRADE	EPAISSEUR NOMINALE	Stores v	énitiens	Stores de tolle							
TYPE DE VITRAGE	(mm)	teinte	teinte	opa	4						
		claire	moyenne	foncé .	clair	- translucide					
Varre & vitre	2 å 6 6 å 12	0,55	0,64	0,59	0,25	0,39					
Verre absorbant by colors	3 1 (0,53	0,57	0,45	0,30	0,36					
Glace absorbante	t l	0,53	0.57	0.45	0.30	0.36					
(grise, bronze ou verte)	10	0,52	0.54	0,40	0,28	0,32					
	12	0,50	0.51	. 0,36	0,28	0,31					
Double vitrege avec tame d'als											
e Verre culi	11	0,51	0,57	0,60	0,25	0,37					
a glaca claire	18 4 37	0,51	0,57	0,60	0,25	0,37					
e glace absorbante + glace claire intérieure	16 4 32	(0,36)	0,35	0,40	0,22	0.30					
Triple vitrage											
cisir	13,5	0,50	0,54	0.57	0,24	0,36					
absorbant	14,5	0,35	0,34	0,39	0,21	0,29					

TABLEAU 20 — FACTEUR SOLAIRE DES PROTECTIONS ENTRE DEUX VITRAGES

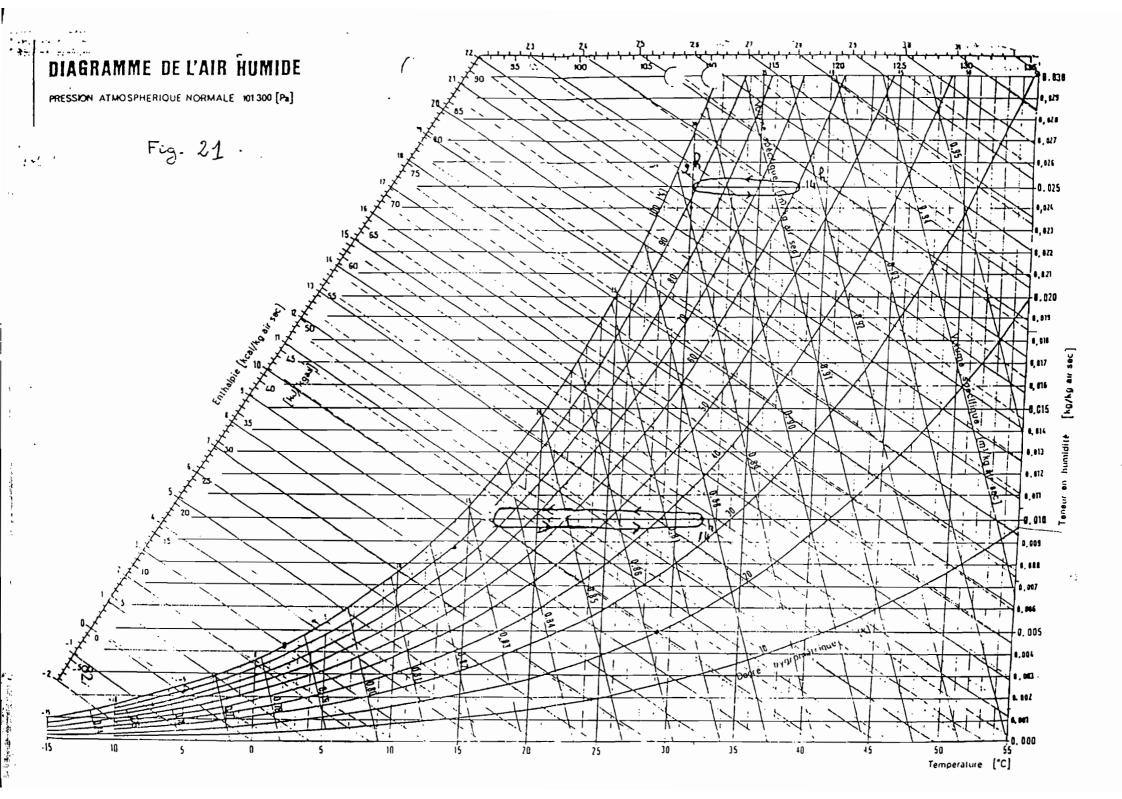

		TYPE DE PROTECTION								
TYPE DE VITRAGE	EPAISSEUR Nom(nale	Stores	Rideau							
	(mjm)	teinte claire	teinte moyenne	(teinte claire)						
Double vitrage :										
4 verre cisir	} 1	0,33	0,3€	0.26						
4 glace claire	18 ,3 37	0.33	0.36	0.26						
• glace absorbanta et glace claire intérieure	18 3 32	0,28	0,30	0.23						

TABLEAU 21 - FACTEUR SOLAIRE DES PROTECTIONS EXTERIEURES ASSOCIEES À DIFFERENTS VITRAGES

				17	PE DE	PROTEC	TION E	CTERIEL	JRE		
TYPE DE VITRAGE	EPAISSEUR NOMINALE (mm)	Stores verticaux		Volets Verficaux		Volets	et store	allenne	Stores venHlens		
		que	trans- lucide	bols	métal	bols	métal	tolla opa- que	tolla trans- lucida	bóls	métal • ou plas- tique
Verre ou giscs				İ							
cieire	3 8 12	0.14	0,27	80,0	0.12	0,10	0.13	0.14	0,22	0,13	0,16
Glace absorbante	3 8 12	0.12	0.16	90,0	0.10	0.08	0.10	0.11	0.15	0,10	0,11
Double vilrage]								
• cisir	18 h 32	0.16	0.20	0,08	0.08	0.08	0.09	0.09	0,19	0,10	0.11
• absorbant	18 A 37	0,09	0,11	0.06	90,0	0.07	0.08	0,06	0,15	0,09	0,10
Triple vitrage					}	l	,	1	ł		
• clair	13.5	0.16	0.20	0.06	0,08	0.06	0.09	0.09	0.19	0,12	0.11
 absorbant 	14.5	90.0	0,10	0,06	80,0	0.07	0.06	0.08	0.15	0.09	0.10

TABLEAU 22 - APPORTS DUS AUX OCCUPANTS ENTHALPIE: [watt/personne] - HUMIDITE: [g/h, personne]

•						Temp	ératu	ra sèch	a du	local (•01				
	er LPIE Same) Frb.]	1	7	1	1	,	ı	1:	3	25		21		3	3
TYPE D'ACTIVITE	APPORT D'ENTHALPIE (métabolisme) [watt pers.]	Chaleur sens.	Hum.	Chaleur sens.	Hum.	Chaleur sens.	ниш.	Chaleur sens.	Hum.	Chaleur sens.	Hum.	Chaleur sens.	Hum.	Chaleur sens.	Hum.
Assis au repos (12 lles de spectacle)	114.	73	31	8c	37	76	46	73	56	67	06	59	PO PO	45	26
Artie, travail láger ou debout au repos (hôleis, locaux scolaires, appartements)	176	102	38	94	46	ēe.	6 C	78	12	70	65	5 G	191	46	172
Aseis, travall modéré — travall de bureau — travaux d'assemblage, de couture	145	109	51	100	61	×	80	82	95	12	110	ė,	127	46	147
Debout, travall légar — travaux de montage — magasins, banques — mécanicien radio	174	119	62	108	96	95	121	84	142	73	156	61	175	48	200
Travalt modéré — vandeur actif — töller — marcha réduite — machiniste	197	143	103	117	116	103	140	89	183	75	162	63	201	48	227
Travall actif — marche 3 [km/h] — supermarchés, grands magasins	732	142	126	126	141	111	170	96	196	81	216	65	237	51	260
Travali intense — serveur très scilf — marche 3,5 (km/h) — travall en atelier — salles de gymnastique	290	172	192	153	213	137	245	119	274	104	290	87	34	72	33?
Travall pánible — marche rapide — danse rapide — effort de poussée — plate de Bowling	40*	208	290	189	318	172	357	153	386	IJA	404	116	479	:20	460

Bibliographie

[1]-THIOYE M.

Notes de cours climatisation

[2]-BEGUIN D.

Climatisation solaire par machine à absorption (Thèse Université de Perpignan Juillet 1983)

[3]-BONNIN J., WILBUR P. J., KARAKI S. Réfrigération solaire

[4]-KREIDER Jan F., KREITK F.

Solar heating and cooling Engineering, Practical design and economics Revised first edition 1975

[5]-DUFFIE J.A., BECKMAN W.A: Solar energy laboratory
University of Wisconsin-Madison
Solar engineering of thermal processes

[6]-WUITHIER P.

Le pétrole, Raffinage et génie chimique T1 1972

[7]-ROULET C.A.

Energétique du bâtiment I Interaction entre le climat et le bâtment Ecole polytechnique fédérale de Lausanne 1986

[8]-UNEP

MONTREAL PROTOCOLE ON SUBSTANCES THAT DEPLETE THE OZONE LAYER

1994 Report of the Refrigeration, Air Conditioning and Heat Pump Technical Options Committee 1995 Assessment